Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(3): e1012091, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38478584

RESUMEN

No antiviral drugs currently are available for treatment of infection by hepatitis A virus (HAV), a causative agent of acute hepatitis, a potentially life-threatening disease. Chemical screening of a small-compound library using nanoluciferase-expressing HAV identified loxapine succinate, a selective dopamine receptor D2 antagonist, as a potent inhibitor of HAV propagation in vitro. Loxapine succinate did not inhibit viral entry nor internal ribosome entry site (IRES)-dependent translation, but exhibited strong inhibition of viral RNA replication. Blind passage of HAV in the presence of loxapine succinate resulted in the accumulation of viruses containing mutations in the 2C-encoding region, which contributed to resistance to loxapine succinate. Analysis of molecular dynamics simulations of the interaction between 2C and loxapine suggested that loxapine binds to the N-terminal region of 2C, and that resistant mutations impede these interactions. We further demonstrated that administration of loxapine succinate to HAV-infected Ifnar1-/- mice (which lack the type I interferon receptor) results in decreases in the levels of fecal HAV RNA and of intrahepatic HAV RNA at an early stage of infection. These findings suggest that HAV protein 2C is a potential target for antivirals, and provide novel insights into the development of drugs for the treatment of hepatitis A.


Asunto(s)
Virus de la Hepatitis A , Loxapina , Animales , Ratones , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/metabolismo , Biosíntesis de Proteínas , Replicación Viral/genética , ARN/metabolismo , Proteínas Virales/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
2.
J Virol ; 98(4): e0005724, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38501662

RESUMEN

Relatively little is known of the mechanisms underlying hepatitis A virus (HAV) genome replication. Unlike other well-studied picornaviruses, HAV RNA replication requires the zinc finger protein ZCCHC14 and non-canonical TENT4 poly(A) polymerases with which it forms a complex. The ZCCHC14-TENT4 complex binds to a stem-loop located within the internal ribosome entry site (IRES) in the 5' untranslated RNA (5'UTR) and is essential for viral RNA synthesis, but the underlying mechanism is unknown. Here, we describe how different ZCCHC14 domains contribute to its RNA-binding, TENT4-binding, and HAV host factor activities. We show that the RNA-binding activity of ZCCHC14 requires both a sterile alpha motif (SAM) and a downstream unstructured domain (D4) and that ZCCHC14 contains two TENT4-binding sites: one at the N-terminus and the other around D4. Both RNA-binding and TENT4-binding are required for HAV host factor activity of ZCCHC14. We also demonstrate that the location of the ZCCHC14-binding site within the 5'UTR is critical for its function. Our study provides a novel insight into the function of ZCCHC14 and helps elucidate the mechanism of the ZCCHC14-TENT4 complex in HAV replication.IMPORTANCEThe zinc finger protein ZCCHC14 is an essential host factor for both hepatitis A virus (HAV) and hepatitis B virus (HBV). It recruits the non-canonical TENT4 poly(A) polymerases to viral RNAs and most likely also a subset of cellular mRNAs. Little is known about the details of these interactions. We show here the functional domains of ZCCHC14 that are involved in binding to HAV RNA and interactions with TENT4 and describe previously unrecognized peptide sequences that are critical for the HAV host factor activity of ZCCHC14. Our study advances the understanding of the ZCCHC14-TENT4 complex and how it functions in regulating viral and cellular RNAs.


Asunto(s)
Virus de la Hepatitis A , Hepatitis A , Proteínas Intrínsecamente Desordenadas , Factores de Transcripción , Humanos , Regiones no Traducidas 5' , Hepatitis A/metabolismo , Hepatitis A/virología , Virus de la Hepatitis A/metabolismo , Biosíntesis de Proteínas , ARN Viral/metabolismo , Factores de Transcripción/metabolismo , Replicación Viral , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo
3.
PLoS Pathog ; 18(8): e1010543, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35969644

RESUMEN

Although picornaviruses are conventionally considered 'nonenveloped', members of multiple picornaviral genera are released nonlytically from infected cells in extracellular vesicles. The mechanisms underlying this process are poorly understood. Here, we describe interactions of the hepatitis A virus (HAV) capsid with components of host endosomal sorting complexes required for transport (ESCRT) that play an essential role in release. We show release of quasi-enveloped virus (eHAV) in exosome-like vesicles requires a conserved export signal located within the 8 kDa C-terminal VP1 pX extension that functions in a manner analogous to late domains of canonical enveloped viruses. Fusing pX to a self-assembling engineered protein nanocage (EPN-pX) resulted in its ESCRT-dependent release in extracellular vesicles. Mutational analysis identified a 24 amino acid peptide sequence located within the center of pX that was both necessary and sufficient for nanocage release. Deleting a YxxL motif within this sequence ablated eHAV release, resulting in virus accumulating intracellularly. The pX export signal is conserved in non-human hepatoviruses from a wide range of mammalian species, and functional in pX sequences from bat hepatoviruses when fused to the nanocage protein, suggesting these viruses are released as quasi-enveloped virions. Quantitative proteomics identified multiple ESCRT-related proteins associating with EPN-pX, including ALG2-interacting protein X (ALIX), and its paralog, tyrosine-protein phosphatase non-receptor type 23 (HD-PTP), a second Bro1 domain protein linked to sorting of ubiquitylated cargo into multivesicular endosomes. RNAi-mediated depletion of either Bro1 domain protein impeded eHAV release. Super-resolution fluorescence microscopy demonstrated colocalization of viral capsids with endogenous ALIX and HD-PTP. Co-immunoprecipitation assays using biotin-tagged peptides and recombinant proteins revealed pX interacts directly through the export signal with N-terminal Bro1 domains of both HD-PTP and ALIX. Our study identifies an exceptionally potent viral export signal mediating extracellular release of virus-sized protein assemblies and shows release requires non-redundant activities of both HD-PTP and ALIX.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Virus de la Hepatitis A , Animales , Proteínas de Unión al Calcio/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/metabolismo , Mamíferos , Proteínas Virales/metabolismo
4.
Nucleic Acids Res ; 50(16): 9470-9489, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35947700

RESUMEN

The HAV nonstructural protein 2C is essential for virus replication; however, its precise function remains elusive. Although HAV 2C shares 24-27% sequence identity with other 2Cs, key motifs are conserved. Here, we demonstrate that HAV 2C is an ATPase but lacking helicase activity. We identified an ATPase-independent nuclease activity of HAV 2C with a preference for polyuridylic single-stranded RNAs. We determined the crystal structure of an HAV 2C fragment to 2.2 Å resolution, containing an ATPase domain, a region equivalent to enterovirus 2C zinc-finger (ZFER) and a C-terminal amphipathic helix (PBD). The PBD of HAV 2C occupies a hydrophobic pocket (Pocket) in the adjacent 2C, and we show the PBD-Pocket interaction is vital for 2C functions. We identified acidic residues that are essential for the ribonuclease activity and demonstrated mutations at these sites abrogate virus replication. We built a hexameric-ring model of HAV 2C, revealing the ribonuclease-essential residues clustering around the central pore of the ring, whereas the ATPase active sites line up at the gaps between adjacent 2Cs. Finally, we show the ribonuclease activity is shared by other picornavirus 2Cs. Our findings identified a previously unfound activity of picornavirus 2C, providing novel insights into the mechanisms of virus replication.


Asunto(s)
Virus de la Hepatitis A , Picornaviridae , Proteínas no Estructurales Virales/metabolismo , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/metabolismo , Replicación Viral/genética , ARN , Picornaviridae/genética , Adenosina Trifosfatasas/genética , Ribonucleasas , ARN Viral/genética , ARN Viral/metabolismo
5.
J Membr Biol ; 255(2-3): 129-142, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35218393

RESUMEN

The importance of disulphide bond in mediating viral peptide entry into host cells is well known. In the present work, we elucidate the role of disulphide (SS) bond in partitioning mechanism of membrane-active Hepatitis A Virus-2B (HAV-2B) peptide, which harbours three cysteine residues promoting formation of multiple SS-bonded states. The inclusion of SS-bond not only results in a compact conformation but also induces distorted α-helical hairpin geometry in comparison to SS-free state. Owing to these, the hydrophobic residues get buried, restricting the insertion of SS-bonded HAV-2B peptide into lipid packing defects and thus the partitioning of the peptide is completely or partly abolished. In this way, the disulphide bond can potentially regulate the partitioning of HAV-2B peptide such that the membrane remodelling effects of this viral peptide are significantly reduced. The current findings may have potential implications in drug designing, targeting the HAV-2B protein by promoting disulphide bond formation within its membrane-active region.


Asunto(s)
Virus de la Hepatitis A , Péptidos , Cisteína/química , Disulfuros/química , Disulfuros/metabolismo , Virus de la Hepatitis A/química , Virus de la Hepatitis A/metabolismo , Membranas , Dominios Proteicos
6.
Proc Natl Acad Sci U S A ; 114(25): 6587-6592, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28490497

RESUMEN

The Picornaviridae are a diverse family of RNA viruses including many pathogens of medical and veterinary importance. Classically considered "nonenveloped," recent studies show that some picornaviruses, notably hepatitis A virus (HAV; genus Hepatovirus) and some members of the Enterovirus genus, are released from cells nonlytically in membranous vesicles. To better understand the biogenesis of quasi-enveloped HAV (eHAV) virions, we conducted a quantitative proteomics analysis of eHAV purified from cell-culture supernatant fluids by isopycnic ultracentrifugation. Amino acid-coded mass tagging (AACT) with stable isotopes followed by tandem mass spectrometry sequencing and AACT quantitation of peptides provided unambiguous identification of proteins associated with eHAV versus unrelated extracellular vesicles with similar buoyant density. Multiple peptides were identified from HAV capsid proteins (53.7% coverage), but none from nonstructural proteins, indicating capsids are packaged as cargo into eHAV vesicles via a highly specific sorting process. Other eHAV-associated proteins (n = 105) were significantly enriched for components of the endolysosomal system (>60%, P < 0.001) and included many common exosome-associated proteins such as the tetraspanin CD9 and dipeptidyl peptidase 4 (DPP4) along with multiple endosomal sorting complex required for transport III (ESCRT-III)-associated proteins. Immunoprecipitation confirmed that DPP4 is displayed on the surface of eHAV produced in cell culture or present in sera from humans with acute hepatitis A. No LC3-related peptides were identified by mass spectrometry. RNAi depletion studies confirmed that ESCRT-III proteins, particularly CHMP2A, function in eHAV biogenesis. In addition to identifying surface markers of eHAV vesicles, the results support an exosome-like mechanism of eHAV egress involving endosomal budding of HAV capsids into multivesicular bodies.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus de la Hepatitis A/metabolismo , Aminoácidos/metabolismo , Línea Celular , Línea Celular Tumoral , Dipeptidil Peptidasa 4/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Exosomas/metabolismo , Humanos , Cuerpos Multivesiculares/metabolismo , Proteómica/métodos , Tetraspaninas/metabolismo , Virión/metabolismo , Liberación del Virus/fisiología
7.
Proc Natl Acad Sci U S A ; 114(36): 9611-9616, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827335

RESUMEN

Picornaviruses use internal ribosome entry sites (IRESs) to translate their genomes into protein. A typical feature of these IRESs is their ability to bind directly to the eukaryotic initiation factor (eIF) 4G component of the eIF4F cap-binding complex. Remarkably, the hepatitis A virus (HAV) IRES requires eIF4E for its translation, but no mechanism has been proposed to explain this. Here we demonstrate that eIF4E regulates HAV IRES-mediated translation by two distinct mechanisms. First, eIF4E binding to eIF4G generates a high-affinity binding conformation of the eIF4F complex for the IRES. Second, eIF4E binding to eIF4G strongly stimulates the rate of duplex unwinding by eIF4A on the IRES. Our data also reveal that eIF4E promotes eIF4F binding and increases the rate of restructuring of the poliovirus (PV) IRES. This provides a mechanism to explain why PV IRES-mediated translation is stimulated by eIF4E availability in nuclease-treated cell-free extracts. Using a PV replicon and purified virion RNA, we also show that eIF4E promotes the rate of eIF4G cleavage by the 2A protease. Finally, we show that cleavage of eIF4G by the poliovirus 2A protease generates a high-affinity IRES binding truncation of eIF4G that stimulates eIF4A duplex unwinding independently of eIF4E. Therefore, our data reveal how picornavirus IRESs use eIF4E-dependent and -independent mechanisms to promote their translation.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Picornaviridae/genética , Animales , Sistema Libre de Células , Virus de la Encefalomiocarditis/genética , Virus de la Encefalomiocarditis/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Genoma Viral , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/metabolismo , Humanos , Técnicas In Vitro , Sitios Internos de Entrada al Ribosoma , Modelos Biológicos , Picornaviridae/metabolismo , Poliovirus/genética , Poliovirus/metabolismo , Biosíntesis de Proteínas , Conejos , Replicón
8.
Chem Biodivers ; 17(2): e1900511, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31800173

RESUMEN

The in vitro cytotoxic activity in Vero cells and the antiviral activity of Erythrina speciosa methanol extract, fractions, and isolated vitexin were studied. The results revealed that E. speciosa leaves ethyl acetate soluble fraction of the methanol extract (ESLE) was the most active against herpes simplex virus type 1 (HSV-1). Bioactivity-guided fractionation was performed on ESLE to isolate the bioactive compounds responsible for this activity. One sub-fraction from ESLE (ESLE IV) showed the highest activity against HSV-1 and Hepatitis A HAV-H10 viruses. Vitexin isolated from ESLE VI exhibited a significant antiviral activity (EC50 =35±2.7 and 18±3.3 µg/mL against HAV-H10 and HSV-1 virus, respectively), which was notably greater than the activity of the extract and the fractions. Molecular docking studies were carried out to explore the molecular interactions of vitexin with different macromolecular targets. Analysis of the in silico data together with the in vitro studies validated the antiviral activity associated with vitexin. These outcomes indicated that vitexin is a potential candidate to be utilized commendably in lead optimization for the development of antiviral agents.


Asunto(s)
Antivirales/metabolismo , Apigenina/metabolismo , Erythrina/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Antivirales/química , Antivirales/farmacología , Apigenina/química , Apigenina/farmacología , Sitios de Unión , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Erythrina/metabolismo , Frutas/química , Frutas/metabolismo , Virus de la Hepatitis A/efectos de los fármacos , Virus de la Hepatitis A/metabolismo , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo
9.
J Virol ; 92(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29437974

RESUMEN

The hepatitis A virus (HAV) cellular receptor 1 (HAVCR1), classified as CD365, was initially discovered as an HAV cellular receptor using an expression cloning strategy. Due to the lack of HAV receptor-negative replication-competent cells, it was not possible to fully prove that HAVCR1 was a functional HAV receptor. However, biochemistry, classical virology, and epidemiology studies further supported the functional role of HAVCR1 as an HAV receptor. Here, we show that an anti-HAVCR1 monoclonal antibody that protected African green monkey kidney (AGMK) cells against HAV infection only partially protected monkey Vero E6 cells and human hepatoma Huh7 cells, indicating that these two cell lines express alternative yet unidentified HAV receptors. Therefore, we focused our work on AGMK cells to further characterize the function of HAVCR1 as an HAV receptor. Advances in clustered regularly interspaced short palindromic repeat/Cas9 technology allowed us to knock out the monkey ortholog of HAVCR1 in AGMK cells. The resulting AGMK HAVCR1 knockout (KO) cells lost susceptibility to HAV infection, including HAV-free viral particles (vpHAV) and exosomes purified from HAV-infected cells (exo-HAV). Transfection of HAVCR1 cDNA into AGMK HAVCR1 KO cells restored susceptibility to vpHAV and exo-HAV infection. Furthermore, transfection of the mouse ortholog of HAVCR1, mHavcr1, also restored the susceptibility of AGMK HAVCR1 KO cells to HAV infection. Taken together, our data clearly show that HAVCR1 and mHavcr1 are functional HAV receptors that mediate HAV infection. This work paves the way for the identification of alternative HAV receptors to gain a complete understanding of their interplay with HAVCR1 in the cell entry and pathogenic processes of HAV.IMPORTANCE HAVCR1, an HAV receptor, is expressed in different cell types, including regulatory immune cells and antigen-presenting cells. How HAV evades the immune response during a long incubation period of up to 4 weeks and the mechanism by which the subsequent necroinflammatory process clears the infection remain a puzzle that most likely involves the HAV-HAVCR1 interaction. Based on negative data, a recent paper from the S. M. Lemon and W. Maury laboratories (A. Das, A. Hirai-Yuki, O. Gonzalez-Lopez, B. Rhein, S. Moller-Tank, R. Brouillette, L. Hensley, I. Misumi, W. Lovell, J. M. Cullen, J. K. Whitmire, W. Maury, and S. M. Lemon, mBio 8:e00969-17, 2017, https://doi.org/10.1128/mBio.00969-17) suggested that HAVCR1 is not a functional HAV receptor, nor it is it required for HAV infection. However, our data, based on regain of the HAV receptor function in HAVCR1 knockout cells transfected with HAVCR1 cDNA, disagree with their findings. Our positive data show conclusively that HAVCR1 is indeed a functional HAV receptor and lays the ground for the identification of alternative HAV receptors and how they interact with HAVCR1 in cell entry and the pathogenesis of HAV.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Receptor Celular 1 del Virus de la Hepatitis A/inmunología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Virus de la Hepatitis A/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Chlorocebus aethiops , Edición Génica/métodos , Técnicas de Inactivación de Genes , Hepatitis A/patología , Receptor Celular 1 del Virus de la Hepatitis A/genética , Humanos , Ratones , Células Vero
10.
Nature ; 496(7445): 367-71, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23542590

RESUMEN

Animal viruses are broadly categorized structurally by the presence or absence of an envelope composed of a lipid-bilayer membrane, attributes that profoundly affect stability, transmission and immune recognition. Among those lacking an envelope, the Picornaviridae are a large and diverse family of positive-strand RNA viruses that includes hepatitis A virus (HAV), an ancient human pathogen that remains a common cause of enterically transmitted hepatitis. HAV infects in a stealth-like manner and replicates efficiently in the liver. Virus-specific antibodies appear only after 3-4 weeks of infection, and typically herald its resolution. Although unexplained mechanistically, both anti-HAV antibody and inactivated whole-virus vaccines prevent disease when administered as late as 2 weeks after exposure, when virus replication is well established in the liver. Here we show that HAV released from cells is cloaked in host-derived membranes, thereby protecting the virion from antibody-mediated neutralization. These enveloped viruses ('eHAV') resemble exosomes, small vesicles that are increasingly recognized to be important in intercellular communications. They are fully infectious, sensitive to extraction with chloroform, and circulate in the blood of infected humans. Their biogenesis is dependent on host proteins associated with endosomal-sorting complexes required for transport (ESCRT), namely VPS4B and ALIX. Whereas the hijacking of membranes by HAV facilitates escape from neutralizing antibodies and probably promotes virus spread within the liver, anti-capsid antibodies restrict replication after infection with eHAV, suggesting a possible explanation for prophylaxis after exposure. Membrane hijacking by HAV blurs the classic distinction between 'enveloped' and 'non-enveloped' viruses and has broad implications for mechanisms of viral egress from infected cells as well as host immune responses.


Asunto(s)
Membrana Celular/metabolismo , Virus de la Hepatitis A/metabolismo , Interacciones Huésped-Patógeno , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Línea Celular , Chlorocebus aethiops , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Hepatitis A/sangre , Hepatitis A/inmunología , Hepatitis A/prevención & control , Hepatitis A/virología , Virus de la Hepatitis A/química , Virus de la Hepatitis A/crecimiento & desarrollo , Virus de la Hepatitis A/inmunología , Humanos , Hígado/virología , Macaca mulatta , Datos de Secuencia Molecular , Pruebas de Neutralización , Pan troglodytes , Proteínas del Envoltorio Viral
11.
Virus Genes ; 52(3): 317-24, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26936379

RESUMEN

The establishment of persistent infection with hepatitis A virus (HAV) is the common result of most HAV/cell culture systems. Previous observations show that the synthesis of viral RNAs is reduced during infection. However, the underlying mechanism is poorly understood. We characterized three HAV-encoded miRNAs in our previous study. In this study, we aim to investigate the impact of these miRNAs on the accumulation of viral RNAs. The results indicated that the synthesis of viral genomic RNAs was dramatically reduced (more than 75 % reduction, P < 0.05) when transfected with one or two viral miRNA mimics. Conversely, they were significantly increased (more than 3.3-fold addition, P < 0.05) when transfected with one or two viral miRNA inhibitors. The luciferase reporter assay of miRNA targets showed that viral miRNAs were fully complementary to specific sites of the viral plus or minus strand RNA and strongly inhibited their expressions. Further data showed that the relative abundance of viral genomic RNA fragments that contain miRNA targets was also dramatically reduced (more than 80 % reduction, P < 0.05) when viral miRNAs were overexpressed with miRNA mimics. In contrast, they were significantly increased (approximately 2-fold addition, P < 0.05) when viral miRNAs were inhibited with miRNA inhibitors. In conclusion, these data suggest a possible mechanism for the reduction of viral RNA synthesis during HAV infection. Thus, we propose that it is likely that RNA virus-derived miRNA could serve as a self-mediated feedback regulator during infection.


Asunto(s)
Virus de la Hepatitis A/genética , Hepatitis A/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Viral/genética , Virión/metabolismo , Línea Celular , Perfilación de la Expresión Génica , Silenciador del Gen , Genoma Viral , Hepatitis A/virología , Virus de la Hepatitis A/metabolismo , Humanos , MicroARNs/biosíntesis , ARN Viral/análisis , ARN Viral/metabolismo , Transfección , Virión/genética , Virión/crecimiento & desarrollo
12.
Mediators Inflamm ; 2016: 1759027, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27578921

RESUMEN

We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1.


Asunto(s)
Bilirrubina/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Virus de la Hepatitis A/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Adolescente , Adulto , Células Cultivadas , Femenino , Receptor Celular 1 del Virus de la Hepatitis A/genética , Humanos , Interleucina-17/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Masculino , Persona de Mediana Edad , Polimorfismo Genético , Transducción de Señal/efectos de los fármacos , Adulto Joven
13.
FASEB J ; 28(10): 4381-93, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25002121

RESUMEN

MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs.


Asunto(s)
Virus de la Hepatitis A/genética , Hepatitis A/metabolismo , MicroARNs/metabolismo , ARN Viral/metabolismo , Secuencia de Bases , Línea Celular , Silenciador del Gen , Virus de la Hepatitis A/metabolismo , Humanos , MicroARNs/química , MicroARNs/genética , Datos de Secuencia Molecular , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Viral/química , ARN Viral/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
14.
Poult Sci ; 93(9): 2184-92, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25012848

RESUMEN

Duck hepatitis A virus (DHAV) is an infectious pathogen causing fatal duck viral hepatitis in ducklings. Although both the inactivated vaccines and live attenuated vaccines have been used to protect ducklings, DHAV-1 and DHAV-3 still cause significant serious damage to the duck industry in China and South Korea. For rapid detection, differentiation, and epidemic investigation of DHAV in China, a genotype-specific 1-step duplex reverse-transcription (RT) PCR assay was established in this study. The sensitivity and specificity of the developed RT-PCR assay was evaluated with nucleic acids extracted from 2 DHAV reference strains, and 9 other infectious viruses and bacteria. The genotype-specific primers amplified different size DNA fragments encompassing the complete VP1 gene of the DHAV-1 or DHAV-3. The assay detected the liver samples collected from experimentally infected ducklings and dead ducklings collected from different regions of China. Sequence analysis of these DNA fragments indicated that VP1 sequences of DHAV-1 can be used to distinguish wild type and vaccine strains. The phylogenetic analysis of VP1 sequences indicated that the developed RT-PCR assay can be used for epidemic investigation of DHAV-1 and DHAV-3. The developed RT-PCR assay can be used as a specific molecular tool for simultaneous detection, differentiation, and sequencing the VP1 gene of DHAV-1 and DHAV-3, which can be used for understanding the epidemiology and evolution of DHAV.


Asunto(s)
Patos , Virus de la Hepatitis A/genética , Hepatitis A/veterinaria , Enfermedades de las Aves de Corral/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Proteínas Estructurales Virales/genética , Virología/métodos , Animales , Hepatitis A/virología , Virus de la Hepatitis A/clasificación , Virus de la Hepatitis A/aislamiento & purificación , Virus de la Hepatitis A/metabolismo , Datos de Secuencia Molecular , Filogenia , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/veterinaria , Proteínas Estructurales Virales/metabolismo
15.
Gastroenterology ; 142(7): 1516-25.e3, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22430395

RESUMEN

BACKGROUND & AIMS: CD4+ T-regulatory (Treg) cells suppress immune responses and control self-tolerance and immunity to pathogens, cancer, and alloantigens. Most pathogens activate Treg cells to minimize immune-mediated tissue damage and prevent clearance, which promotes chronic infections. However, hepatitis A virus (HAV) temporarily inhibits Treg-cell functions. We investigated whether the interaction of HAV with its cellular receptor 1 (HAVCR1), a T-cell co-stimulatory molecule, inhibits the function of Treg cells to control HAV infection. METHODS: We studied the effects of HAV interaction with HAVCR1 on human T cells using binding, signal transduction, apoptosis, activation, suppression, cytokine production, and confocal microscopy analyses. Cytokines were analyzed in sera from 14 patients with HAV infection using bead arrays. RESULTS: Human Treg cells constitutively express HAVCR1. Binding of HAV to HAVCR1 blocked phosphorylation of Akt, prevented activation of the T-cell receptor, and inhibited function of Treg cells. At the peak viremia, patients with acute HAV infection had no Treg-cell suppression function, produced low levels of transforming growth factor-ß , which limited leukocyte recruitment and survival, and produced high levels of interleukin-22, which prevented liver damage. CONCLUSIONS: Interaction between HAV and its receptor HAVCR1 inhibits Treg-cell function, resulting in an immune imbalance that allows viral expansion with limited hepatocellular damage during early stages of infection-a characteristic of HAV pathogenesis. The mechanism by which HAV is cleared in the absence of Treg-cell function could be used as a model to develop anticancer therapies, modulate autoimmune and allergic responses, and prevent transplant rejection.


Asunto(s)
Virus de la Hepatitis A/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Virales/metabolismo , Linfocitos T Reguladores/inmunología , Acoplamiento Viral , Línea Celular , Hepatitis A/inmunología , Hepatitis A/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A , Humanos , Interleucinas/biosíntesis , Proteínas Proto-Oncogénicas c-akt , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/virología , Factor de Crecimiento Transformador beta1/sangre , Interleucina-22
16.
J Virol ; 86(15): 7887-95, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22593170

RESUMEN

Hepatitis A virus (HAV) has previously been reported to bind to human red blood cells through interaction with glycophorin A. Residue K221 of VP1 and the surrounding VP3 residues are involved in such an interaction. This capsid region is specifically recognized by the monoclonal antibody H7C27. A monoclonal antibody-resistant mutant with the mutation G1217D has been isolated. In the present study, the G1217D mutant was characterized physically and biologically in comparison with the parental HM175 43c strain. The G1217D mutant is more sensitive to acid pH and binds more efficiently to human and rat erythrocytes than the parental 43c strain. In a rat model, it is eliminated from serum more rapidly and consequently reaches the liver with a certain delay compared to the parental 43c strain. In competition experiments performed in vivo in the rat model, the G1217D mutant was efficiently outcompeted by the parental 43c strain. Only in the presence of antibodies reacting specifically with the parental 43c strain could the G1217D mutant outcompete the parental 43c strain in serum, although the latter still showed a remarkable ability to reach the liver. Altogether, these results indicate that the G1217D mutation induces a low fitness phenotype which could explain the lack of natural antigenic variants of the glycophorin A binding site.


Asunto(s)
Eritrocitos/metabolismo , Glicoforinas/metabolismo , Virus de la Hepatitis A/metabolismo , Mutación Missense , Sustitución de Aminoácidos , Animales , Sitios de Unión , Eritrocitos/virología , Femenino , Glicoforinas/genética , Virus de la Hepatitis A/genética , Humanos , Concentración de Iones de Hidrógeno , Ratas , Ratas Wistar
17.
Genet Mol Res ; 12(3): 2306-19, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23884773

RESUMEN

To analyze the synonymous codon usage patterns of sequence regions flanking cleavage sites in the hepatitis A virus (HAV) polyprotein, the codon usage bias at codon positions and the synonymous codon usage in the target contexts of 30 virus strains were estimated by two simple methods that were based on the values for relative synonymous codon usage. In addition, the pattern of synonymous codon usage was compared between the genomic sequences in HAV and those of its human host. Our results indicated that HAV adopts a combination of coincidence and antagonism with the synonymous codon usage in humans. This characteristic may help HAV to efficiently use the translational machinery in its human host. We also observed that codon usage exhibited a strong bias in some specific positions in these contexts, and that the underrepresented synonymous codons, CUA for Leu, ACG for Thr, GUA for Val, and UCG for Ser, are preferentially used in these positions. These underrepresented synonymous codons likely play roles in regulating the rate of protein translation and influencing the secondary structure of the sequence regions flanking the cleavage sites.


Asunto(s)
Codón/genética , Virus de la Hepatitis A/genética , Poliproteínas/genética , Proteolisis , Proteínas Virales/genética , ADN Viral/química , ADN Viral/metabolismo , Genoma Humano , Genoma Viral , Virus de la Hepatitis A/metabolismo , Humanos , Poliproteínas/metabolismo , Análisis de Secuencia de ADN , Proteínas Virales/metabolismo
18.
Mol Gen Mikrobiol Virusol ; (3): 12-21, 2013.
Artículo en Ruso | MEDLINE | ID: mdl-24364140

RESUMEN

The analysis of recently published data on hepatitis A virus (HAV) genome clinical features, molecular diagnostic value and cell culture propagation are reviewed. The growing need in the study of the genetic diversity of HAV isolates and the search of its possible new antigenic variants are underlined. The results of the cultivation of different HAV strains are analyzed for possible application in vaccine and diagnostic kit production.


Asunto(s)
Variación Genética , Genoma Viral , Virus de la Hepatitis A , Hepatitis A , Juego de Reactivos para Diagnóstico , Animales , Hepatitis A/diagnóstico , Hepatitis A/genética , Hepatitis A/metabolismo , Antígenos de Hepatitis A/genética , Antígenos de Hepatitis A/metabolismo , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/crecimiento & desarrollo , Virus de la Hepatitis A/metabolismo , Humanos
19.
mBio ; 14(2): e0035823, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36939331

RESUMEN

Viruses lack the properties to replicate independently due to the limited resources encoded in their genome; therefore, they hijack the host cell machinery to replicate and survive. Picornaviruses get the prerequisite for effective protein synthesis through specific sequences known as internal ribosome entry sites (IRESs). In the past 2 decades, significant progress has been made in identifying different types of IRESs in picornaviruses. This review will discuss the past and current findings related to the five different types of IRESs and various internal ribosome entry site trans-acting factors (ITAFs) that either promote or suppress picornavirus translation and replication. Some IRESs are inefficient and thus require ITAFs. To achieve their full efficiency, they recruit various ITAFs, which enable them to translate more effectively and efficiently, except type IV IRES, which does not require any ITAFs. Although there are two kinds of ITAFs, one promotes viral IRES-dependent translation, and the second type restricts. Picornaviruses IRESs are classified into five types based on their use of sequence, ITAFs, and initiation factors. Some ITAFs regulate IRES activity by localizing to the viral replication factories in the cytoplasm. Also, some drugs, chemicals, and herbal extracts also regulate viral IRES-dependent translation and replication. Altogether, this review will elaborate on our understanding of the past and recent advancements in the IRES-dependent translation and replication of picornaviruses. IMPORTANCE The family Picornaviridae is divided into 68 genera and 158 species. The viruses belonging to this family range from public health importance, such as poliovirus, enterovirus A71, and hepatitis A virus, to animal viruses of great economic importance, such as foot-and-mouth disease virus. The genomes of picornaviruses contain 5' untranslated regions (5' UTRs), which possess crucial and highly structured stem-loops known as IRESs. IRES assemble the ribosomes and facilitate the cap-independent translation. Virus-host interaction is a hot spot for researchers, which warrants deep insight into understanding viral pathogenesis better and discovering new tools and ways for viral restriction to improve human and animal health. The cap-independent translation in the majority of picornaviruses is modulated by ITAFs, which bind to various IRES regions to initiate the translation. The discoveries of ITAFs substantially contributed to understanding viral replication behavior and enhanced our knowledge about virus-host interaction more effectively than ever before. This review discussed the various types of IRESs found in Picornaviridae, past and present discoveries regarding ITAFs, and their mechanism of action. The herbal extracts, drugs, and chemicals, which indicated their importance in controlling viruses, were also summarized. In addition, we discussed the movement of ITAFs from the nucleus to viral replication factories. We believe this review will stimulate researchers to search for more novel ITAFs, drugs, herbal extracts, and chemicals, enhancing the understanding of virus-host interaction.


Asunto(s)
Virus de la Fiebre Aftosa , Virus de la Hepatitis A , Picornaviridae , Animales , Humanos , Picornaviridae/genética , Sitios Internos de Entrada al Ribosoma , Virus de la Fiebre Aftosa/fisiología , Ribosomas/genética , Ribosomas/metabolismo , Virus de la Hepatitis A/metabolismo , Biosíntesis de Proteínas , ARN Viral/metabolismo
20.
Biochemistry ; 51(38): 7588-95, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22938730

RESUMEN

Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsilon toxin important for this cell interaction. Site-specific mutagenesis was used to investigate the role of a surface-accessible cluster of aromatic amino acids, and purified mutant proteins were tested in a series of cell-culture assays to assess cytotoxic activity and cell binding. When added to cells, four mutant proteins (Etx-Y29E, Etx-Y30E, Etx-Y36E and Etx-Y196E) were severely impaired in their ability to not only kill host cells, but also in their ability to permeabilize the plasma membrane. Circular dichroism spectroscopy and thermal stability studies revealed that the wild-type and mutant proteins were similarly folded. Additional experiments revealed that these mutant proteins were defective in binding to host cells and to HAVCR1. These data indicate that an amino acid motif including Y29, Y30, Y36, and Y196 is important for the ability of epsilon toxin to interact with cells and HAVCR1.


Asunto(s)
Aminoácidos/metabolismo , Toxinas Bacterianas/metabolismo , Virus de la Hepatitis A/metabolismo , Receptores Virales/metabolismo , Animales , Toxinas Bacterianas/genética , Línea Celular , Perros , Mutación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA