Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 615(7952): 541-547, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890228

RESUMEN

Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival1. This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments2,3. Atmospheric H2 oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily4,5. However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2 and how the derived electrons are transferred to the respiratory chain1. Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H2 to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H2 at the expense of O2, and 3 [3Fe-4S] clusters modulate the properties of the enzyme so that atmospheric H2 oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 Å from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H2 oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H2 in ambient air.


Asunto(s)
Atmósfera , Hidrógeno , Hidrogenasas , Mycobacterium smegmatis , Microscopía por Crioelectrón , Hidrógeno/química , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/metabolismo , Hidrogenasas/ultraestructura , Oxidación-Reducción , Oxígeno , Vitamina K 2/metabolismo , Atmósfera/química , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo , Hidrogenación
2.
Nature ; 589(7841): 310-314, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268896

RESUMEN

Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Bacterioclorofilas/metabolismo , Sitios de Unión/efectos de los fármacos , Clorofila/metabolismo , Clorofila/efectos de la radiación , Cristalografía , Citoplasma/metabolismo , Transporte de Electrón/efectos de los fármacos , Electrones , Hyphomicrobiaceae/enzimología , Hyphomicrobiaceae/metabolismo , Rayos Láser , Modelos Moleculares , Oxidación-Reducción/efectos de la radiación , Feofitinas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Protones , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Vitamina K 2/metabolismo
3.
Biotechnol Bioeng ; 121(10): 3338-3350, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38965781

RESUMEN

Menaquinone-7 (MK-7), a form of vitamin K2, supports bone health and prevents arterial calcification. Microbial fermentation for MK-7 production has attracted widespread attention because of its low cost and short production cycles. However, insufficient substrate supply, unbalanced precursor synthesis, and low catalytic efficiency of key enzymes severely limited the efficiency of MK-7 synthesis. In this study, utilizing Bacillus subtilis BSAT01 (with an initial MK-7 titer of 231.0 mg/L) obtained in our previous study, the glycerol metabolism pathway was first enhanced to increase the 3-deoxy-arabino-heptulonate 7-phosphate (DHAP) supply, which led to an increase in MK-7 titer to 259.7 mg/L. Subsequently, a combination of knockout strategies predicted by the genome-scale metabolic model etiBsu1209 was employed to optimize the central carbon metabolism pathway, and the resulting strain showed an increase in MK-7 production from 259.7 to 318.3 mg/L. Finally, model predictions revealed the methylerythritol phosphate pathway as the major restriction pathway, and the pathway flux was increased by heterologous introduction (Introduction of Dxs derived from Escherichia coli) and fusion expression (End-to-end fusion of two enzymes by a linker peptide), resulting in a strain with a titer of 451.0 mg/L in a shake flask and 474.0 mg/L in a 50-L bioreactor. This study achieved efficient MK-7 synthesis in B. subtilis, laying the foundation for large-scale MK-7 bioproduction.


Asunto(s)
Bacillus subtilis , Ingeniería Metabólica , Vitamina K 2 , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ingeniería Metabólica/métodos , Vitamina K 2/metabolismo , Vitamina K 2/análogos & derivados , Redes y Vías Metabólicas/genética
4.
J Biochem Mol Toxicol ; 38(1): e23609, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38037266

RESUMEN

Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia due to insulin deficiency and/or resistance. Vitamin K (VK) is a group of fat-soluble molecules, including naturally occurring vitamin K1 (phylloquinone). vitamin K2 (menaquinone), and synthetic vitamin K3 (menadione). Beyond coagulation, the health benefits of VK have been described to play different roles in both physiological and pathological processes such as inflammation, energy metabolism, neuroprotection, cellular growth, and survival. It was aimed to observe the antioxidant and/or neuroprotective activity of vitamin K1 in our model of chick embryo diabetic neuropathy (DN) induced by streptozotocin (STZ). Ninety White Leghorn, fertile and 0-day-old SPF (specific pathogen-free) eggs (57 ± 4 gr) were used in the study. Chick embryo blood brain tissues were taken for biochemical evaluation. Plasma insulin and glucose levels were measured. In addition, brain tissue total antioxidant level (TAS), total oxidant level (TOS), malondialdehyde (MDA), and vascular endothelial growth factor (VEGF) levels were measured. Plasma glucose levels were higher in the STZ-treated groups and lower in the treatment groups. Plasma insulin levels were observed to be higher in STZ groups in groups treated with high VK. Low TAS, high MDA, TOS, and VEGF levels were recorded in brain tissue STZ groups. Low VEGF, TOS, and MDA levels were recorded in the group treated with the highest VK, while high TAS levels were observed. In our STZ-induced chick embryo diabetic neuropathy model, we observed that VK1 reduced oxidant damage by showing antioxidant properties or by modulating antioxidant enzymes.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Embrión de Pollo , Animales , Antioxidantes/efectos adversos , Vitamina K , Factor A de Crecimiento Endotelial Vascular , Vitamina K 1/efectos adversos , Estreptozocina/efectos adversos , Pollos/metabolismo , Neuropatías Diabéticas/inducido químicamente , Neuropatías Diabéticas/tratamiento farmacológico , Neuroprotección , Diabetes Mellitus Experimental/inducido químicamente , Vitamina K 3 , Vitamina K 2/efectos adversos , Vitamina K 2/metabolismo , Insulina , Oxidantes , Glucemia/metabolismo
5.
Curr Microbiol ; 81(10): 348, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39251411

RESUMEN

A high cell-surface hydrophobic bacterium, strain A18T, was isolated from a waste digestion system in Chaozhou, China. Cells of strain A18T were Gram-stain-positive, aerobic, non-spore-forming, non-motile, and rod-shaped. Phylogenetic analyses based on the 16S rRNA gene showed that strain A18T shared less than 94.2% sequence similarity to all validated species in the family Chitinophagaceae, and formed a distinct lineage close to genera Niabella and Terrimonas in the neighbor-joining tree, indicating that strain A18T is a novel species. Genome-based phylogenetic analyses revealed that strain A18T is affiliated to the genus Niabella. The cellular components, including iso-C15:0 and iso-C15:1 G as the major fatty acids, menaquinone-7 as the respiratory quinone and a DNA G + C content of 40.54% supported strain A18T as a member of the genus Niabella. However, the physiological and biochemical properties, such as enzyme activities, carbon source utilization and C18:0 3-OH as another major fatty acids, distinguished strain A18T from its close related species. Therefore, the name Niabella digestorum sp. nov. is proposed for this novel species. The type strain is A18T (= GDMCC 1.3242 T = KCTC 92386 T).


Asunto(s)
Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Ácidos Grasos/metabolismo , ADN Bacteriano/genética , China , Técnicas de Tipificación Bacteriana , Interacciones Hidrofóbicas e Hidrofílicas , Bacteroidetes/genética , Bacteroidetes/clasificación , Bacteroidetes/aislamiento & purificación , Bacteroidetes/metabolismo , Análisis de Secuencia de ADN , Vitamina K 2/metabolismo , Vitamina K 2/análisis , Vitamina K 2/análogos & derivados
6.
Food Microbiol ; 124: 104599, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244358

RESUMEN

Menaquinone-7 (MK-7) is a form of vitamin K2 with health-beneficial effects. A novel fermentation strategy based on combining soy protein hydrolysates (SPHs) with biofilm-based fermentation was investigated to enhance menaquinone-7 (MK-7) biosynthesis by Bacillus subtilis natto. Results showed the SPHs increased MK-7 yield by 199.4% in two-stage aeration fermentation as compared to the SP-based medium in submerged fermentation, which was related to the formation of robust biofilm with wrinkles and the enhancement of cell viability. Moreover, there was a significant correlation between key genes related to MK-7 and biofilm synthesis, and the quorum sensing (QS) related genes, Spo0A and SinR, were downregulated by 0.64-fold and 0.39-fold respectively, which promoted biofilm matrix synthesis. Meanwhile, SPHs also enhanced the MK-7 precursor, isoprene side chain, supply, and MK-7 assembly efficiency. Improved fermentation performances of bacterial cells during fermentation were attributed to abundant oligopeptides (Mw < 1 kDa) and moderate amino acids, particularly Arg, Asp, and Phe in SPHs. All these results revealed that SPHs were a potential and superior nitrogen source for MK-7 production by Bacillus subtilis natto.


Asunto(s)
Bacillus subtilis , Biopelículas , Fermentación , Hidrolisados de Proteína , Proteínas de Soja , Vitamina K 2 , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/fisiología , Biopelículas/crecimiento & desarrollo , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismo , Hidrolisados de Proteína/metabolismo , Proteínas de Soja/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Percepción de Quorum
7.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33372143

RESUMEN

The electron-transferring flavoprotein-menaquinone oxidoreductase ABCX (EtfABCX), also known as FixABCX for its role in nitrogen-fixing organisms, is a member of a family of electron-transferring flavoproteins that catalyze electron bifurcation. EtfABCX enables endergonic reduction of ferredoxin (E°' ∼-450 mV) using NADH (E°' -320 mV) as the electron donor by coupling this reaction to the exergonic reduction of menaquinone (E°' -80 mV). Here we report the 2.9 Å structure of EtfABCX, a membrane-associated flavin-based electron bifurcation (FBEB) complex, from a thermophilic bacterium. EtfABCX forms a superdimer with two membrane-associated EtfCs at the dimer interface that contain two bound menaquinones. The structure reveals that, in contrast to previous predictions, the low-potential electrons bifurcated from EtfAB are most likely directly transferred to ferredoxin, while high-potential electrons reduce the quinone via two [4Fe-4S] clusters in EtfX. Surprisingly, EtfX shares remarkable structural similarity with mammalian [4Fe-4S] cluster-containing ETF ubiquinone oxidoreductase (ETF-QO), suggesting an unexpected evolutionary link between bifurcating and nonbifurcating systems. Based on this structure and spectroscopic studies of a closely related EtfABCX, we propose a detailed mechanism of the catalytic cycle and the accompanying structural changes in this membrane-associated FBEB system.


Asunto(s)
Flavoproteínas Transportadoras de Electrones/metabolismo , Quinona Reductasas/metabolismo , Quinona Reductasas/ultraestructura , Proteínas Bacterianas/metabolismo , Catálisis , Microscopía por Crioelectrón/métodos , Transporte de Electrón , Electrones , Ferredoxinas/metabolismo , Flavinas/metabolismo , Flavoproteínas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , NAD/metabolismo , Fijación del Nitrógeno/fisiología , Oxidación-Reducción , Pyrococcus furiosus/metabolismo , Quinona Reductasas/fisiología , Vitamina K 2/metabolismo
8.
Bioprocess Biosyst Eng ; 47(2): 211-222, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38153563

RESUMEN

Menaquinone-7 (MK-7) is an important class of vitamin K2 that is essential in human health and can prevent osteoporosis and cardiovascular disease. However, due to the complex synthesis pathway, the synthesis efficiency is low. The main objective of this study was to explore the effect of enhanced supply of precursors in Bacillus natto. Three precursors of pyruvate, shikimic acid, and sodium glutamate were chosen to investigate the effect of enhanced supply of precursors on MK-7 synthesis. Then, the optimal concentrations, different combinations, and different adding times were systematically studied, respectively. Results showed that the combination of shikimic acid and sodium glutamate could boost MK-7 production by 2 times, reaching 50 mg/L of MK-7 titer and 0.52 mg/(L·h) of MK-7 productivity. Furthermore, adding shikimic acid and sodium glutamate initially and feeding pyruvate at 48 h and 72 h increased MK-7 production to 58 mg/L. At the same time, the expression of the three related genes was also significantly upregulated. Subsequently, a new fermentation strategy combining the precursors enhancement and product secretion was proposed to enhance MK-7 yield and MK-7 productivity to 63 mg/L and 0.45 mg/(L·h). This study proposed a new fermentation regulation strategy for the enhancement of vitamin K2 biosynthesis.


Asunto(s)
Ácido Shikímico , Glutamato de Sodio , Humanos , Vitamina K 2/metabolismo , Ácido Shikímico/metabolismo , Glutamato de Sodio/metabolismo , Fermentación , Bacillus subtilis/genética , Piruvatos/metabolismo
9.
Bioprocess Biosyst Eng ; 47(7): 1107-1116, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38864863

RESUMEN

Menaquinone-7 (MK-7), a vital vitamin with numerous health benefits, is synthesized and secreted extracellularly by the formation of biofilm, dominantly in Bacillus strains. Our team developed an innovative biofilm reactor utilizing Bacillus subtilis natto cells to foster biofilm growth on plastic composite supports to produce MK-7. Continuous fermentation in biofilm reactors offers a promising strategy for achieving sustainable and efficient production of Menaquinone-7 (MK-7). Unlike conventional batch fermentation, continuous biofilm reactors maintain a steady state of operation, which reduces resource consumption and waste generation, contributing to sustainability. By optimizing fermentation conditions, MK-7 production was significantly enhanced in this study, demonstrating the potential for sustainable industrial-scale production. To determine the optimal operational parameters, various dilution rates were tested. These rates were selected based on their potential to enhance nutrient supply and biofilm stability, thereby improving MK-7 production. By carefully considering the fermentation conditions and systematically varying the dilution rates, MK-7 production was significantly enhanced during continuous fermentation. The MK-7 productivity was found to increase from 0.12 mg/L/h to 0.33 mg/L/h with a dilution rate increment from 0.007 to 0.042 h-1). This range was chosen to explore the impact of various nutrient supply rates on MK-7 production and to identify the optimal conditions for maximizing productivity. However, a further increase in the dilution rate to 0.084 h-1 led to reduced productivity at approximately 0.16 mg/L/h, likely due to insufficient retention time for effective biofilm formation. Consequently, a dilution rate of 0.042 h-1 exhibited the highest productivity of 0.33 mg/L/h, outperforming all investigated dilution rates and demonstrating the critical balance between nutrient supply and retention time in continuous fermentation. These findings validate the feasibility of operating continuous fermentation at a 0.084 h-1 dilution rate, corresponding to a 48 h retention time, to achieve the highest MK-7 productivity compared to conventional batch fermentation. The significant advancements achieved in enhancing Menaquinone-7 (MK-7) productivity through continuous fermentation at optimal dilution rates in the present work indicate promising prospects for even greater efficiency and sustainability in MK-7 production through future developments.


Asunto(s)
Bacillus subtilis , Biopelículas , Reactores Biológicos , Vitamina K 2 , Biopelículas/crecimiento & desarrollo , Vitamina K 2/metabolismo , Vitamina K 2/análogos & derivados , Bacillus subtilis/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Fermentación
10.
J Biol Chem ; 298(2): 101384, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34748728

RESUMEN

The molybdenum/tungsten-bis-pyranopterin guanine dinucleotide family of formate dehydrogenases (FDHs) plays roles in several metabolic pathways ranging from carbon fixation to energy harvesting because of their reaction with a wide variety of redox partners. Indeed, this metabolic plasticity results from the diverse structures, cofactor content, and substrates used by partner subunits interacting with the catalytic hub. Here, we unveiled two noncanonical FDHs in Bacillus subtilis, which are organized into two-subunit complexes with unique features, ForCE1 and ForCE2. We show that the formate oxidoreductase catalytic subunit interacts with an unprecedented partner subunit, formate oxidoreductase essential subunit, and that its amino acid sequence within the active site deviates from the consensus residues typically associated with FDH activity, as a histidine residue is naturally substituted with a glutamine. The formate oxidoreductase essential subunit mediates the utilization of menaquinone as an electron acceptor as shown by the formate:menadione oxidoreductase activity of both enzymes, their copurification with menaquinone, and the distinctive detection of a protein-bound neutral menasemiquinone radical by multifrequency electron paramagnetic resonance (EPR) experiments on the purified enzymes. Moreover, EPR characterization of both FDHs reveals the presence of several [Fe-S] clusters with distinct relaxation properties and a weakly anisotropic Mo(V) EPR signature, consistent with the characteristic molybdenum/bis-pyranopterin guanine dinucleotide cofactor of this enzyme family. Altogether, this work enlarges our knowledge of the FDH family by identifying a noncanonical FDH, which differs in terms of architecture, amino acid conservation around the molybdenum cofactor, and reactivity.


Asunto(s)
Formiato Deshidrogenasas , Molibdeno , Vitamina K 2 , Espectroscopía de Resonancia por Spin del Electrón , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/metabolismo , Formiatos/metabolismo , Guanina/metabolismo , Molibdeno/química , Vitamina K 2/química , Vitamina K 2/metabolismo
11.
J Cardiovasc Pharmacol ; 81(5): 381-388, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857749

RESUMEN

ABSTRACT: Myocardial infarction is among the leading causes of mortality. Menaquinone-4 (MK-4), a vitamin K2 analog, might play a role in rescuing cardiac ischemia/reperfusion (I/R) injury. This work aimed to discover the potential cardioprotective role of MK-4 against myocardial I/R injury in rats. Thirty-two rats were categorized into 3 groups: (I/R) control group: subjected to I/R protocol (received vehicle), MK-4 preconditioning group: MK-4 infusion for 20 minutes before the I/R protocol, and MK-4 postconditioning group: MK-4 infusion for 20 minutes at the start of the reperfusion phase. The hearts were placed in the Langendorff apparatus, and the left ventricular developed pressure (LVDP), heart rate (HR), + (LV dP/dt) max, - (LV dP/dt) max, and Tau were calculated. The necrotic mass was determined by staining it with nitro blue tetrazolium. Creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C- reactive protein (CRP), as well as cardiac superoxide dismutase (SOD), nitric oxide (NOx), malondialdehyde (MDA), and glutathione (GSH) levels were all evaluated. MK-4 postconditioning significantly reduced myocardial infarct size; increased LVDP, + (LV dp/dt) max, - (LV dp/dt) max, and HR; reduced Tau, CK-MB, LDH, CRP, IL-6, TNF-α, MDA, and NOx levels; and increased SOD activity, whereas no significant difference in the GSH level was detected. In conclusion, these data imply that MK-4 may protect the heart from the consequences of I/R.


Asunto(s)
Daño por Reperfusión Miocárdica , Factor de Necrosis Tumoral alfa , Ratas , Animales , Vitamina K 2/farmacología , Vitamina K 2/metabolismo , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Estrés Oxidativo , Daño por Reperfusión Miocárdica/patología , Superóxido Dismutasa/metabolismo , Glutatión , Miocardio/patología
12.
Appl Microbiol Biotechnol ; 107(16): 5051-5062, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37358810

RESUMEN

Menaquinone-7 is a form of vitamin K2 that has been shown to have numerous healthy benefits. In this study, several surfactants were investigated to enhance the production of menaquinone-7 in Bacillus natto. Results showed that Brij-58 supplementation influenced the cell membrane via adsorption, and changed the interfacial tension of fermentation broth, while the changes in the state and the composition of the cell membrane enhanced the secretion and biosynthesis of menaquinone-7. The total production and secretion rate of menaquinone-7 increased by 48.0% and 56.2% respectively. During fermentation, the integrity of the cell membrane decreased by 82.9% while the permeability increased by 158% when the maximum secretory rate was reached. Furthermore, Brij-58 supplementation induced the stress response in bacteria, resulting in hyperpolarization of the membrane, and increased membrane ATPase activity. Finally, changes in fatty acid composition increased membrane fluidity by 30.1%. This study provided an effective strategy to enhance menaquinone-7 yield in Bacillus natto and revealed the mechanism of Brij-58 supplementation in menaquinone-7 production. KEY POINTS: • MK-7 yield in Bacillus natto was significantly increased by Brij-58 supplementation. • Brij-58 could be adsorbed on cell surface and change fermentation environment. • Brij-58 supplementation could affect the state and composition of the cell membrane.


Asunto(s)
Cetomacrogol , Alimentos de Soja , Cetomacrogol/metabolismo , Bacillus subtilis/metabolismo , Vitamina K 2/metabolismo , Fermentación , Suplementos Dietéticos
13.
Antonie Van Leeuwenhoek ; 116(9): 883-892, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37338631

RESUMEN

A Gram-strain positive, aerobic, endospore-forming bacterial strain (JJ-246T) was isolated from the rhizosphere of Zea mays. The 16S rRNA gene sequence similarity comparisons showed a most closely relationship to Paenibacillus oenotherae DT7-4T (98.4%) and Paenibacillus xanthinolyticus 11N27T (98.0%). The pairwise average nucleotide identity and digital DNA-DNA hybridisation values of the JJ-246T genome assembly against publicly available Paenibacillus type strain genomes were below 82% and 33%, respectively. The draft genome of JJ-246T shared many putative plant-beneficial functions contributing (PBFC) genes, related to plant root colonisation, oxidative stress protection, degradation of aromatic compounds, plant growth-promoting traits, disease resistance, drug and heavy metal resistance, and nutrient acquisition. The quinone system of strain JJ-246T, the polar lipid profile and the major fatty acids were congruent with those reported for members of the genus Paenibacillus. JJ-246T was shown to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus plantiphilus sp. nov. is proposed, with JJ-246T (= LMG 32093T = CCM 9089T = CIP 111893T) as the type strain.


Asunto(s)
Paenibacillus , Zea mays , Zea mays/microbiología , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Composición de Base , Filogenia , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Vitamina K 2/metabolismo , Ácidos Grasos/metabolismo , Técnicas de Tipificación Bacteriana
14.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769323

RESUMEN

Ulcerative colitis (UC) is a chronic recurrent inflammatory illness of the gastrointestinal system. The purpose of this study was to explore the alleviating effect of vitamin K2 (VK2) on UC, as well as its mechanism. C57BL/6J mice were given 3% DSS for seven days to establish UC, and they then received VK2 (15, 30, or 60 mg/kg·bw) and 5-aminosalicylic acid (100 mg/kg·bw) for two weeks. We recorded the clinical signs, body weights, colon lengths, and histological changes during the experiment. We detected the inflammatory factor expressions using enzyme-linked immunosorbent assay (ELISA) kits, and we detected the tight junction proteins using Western blotting. We analyzed the intestinal microbiota alterations and short-chain fatty acids (SCFAs) using 16S rRNA sequencing and targeted metabolomics. According to the results, VK2 restored the colon lengths, improved the colonic histopathology, reduced the levels of proinflammatory cytokines (such as IL-1ß, TNF-α, and IL-6), and boosted the level of the immunosuppressive cytokine IL-10 in the colon tissues of the colitis mice. Moreover, VK2 promoted the expression of mucin and tight junction proteins (such as occludin and zonula occludens-1) in order to preserve the intestinal mucosal barrier function and prevent UC in mice. Additionally, after the VK2 intervention, the SCFAs and SCFA-producing genera, such as Eubacterium_ruminantium_group and Faecalibaculum, were elevated in the colon. In conclusion, VK2 alleviated the DSS-induced colitis in the mice, perhaps by boosting the dominant intestinal microflora, such as Faecalibaculum, by reducing intestinal microflora dysbiosis, and by modulating the expression of SCFAs, inflammatory factors, and intestinal barrier proteins.


Asunto(s)
Colitis Ulcerosa , Colitis , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Sulfato de Dextran/toxicidad , Vitamina K 2/metabolismo , ARN Ribosómico 16S/metabolismo , Ratones Endogámicos C57BL , Colitis/patología , Colon/patología , Citocinas/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Firmicutes/metabolismo , Modelos Animales de Enfermedad
15.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240169

RESUMEN

During aging, bone marrow mesenchymal stromal cells (MSCs)-the precursors of osteoblasts-undergo cellular senescence, losing their osteogenic potential and acquiring a pro-inflammatory secretory phenotype. These dysfunctions cause bone loss and lead to osteoporosis. Prevention and intervention at an early stage of bone loss are important, and naturally active compounds could represent a valid help in addition to diet. Here, we tested the hypothesis that the combination of two pro-osteogenic factors, namely orthosilicic acid (OA) and vitamin K2 (VK2), and three other anti-inflammatory compounds, namely curcumin (CUR), polydatin (PD) and quercetin (QCT)-that mirror the nutraceutical BlastiMin Complex® (Mivell, Italy)-would be effective in promoting MSC osteogenesis, even of replicative senescent cells (sMSCs), and inhibiting their pro-inflammatory phenotype in vitro. Results showed that when used at non-cytotoxic doses, (i) the association of OA and VK2 promoted MSC differentiation into osteoblasts, even when cultured without other pro-differentiating factors; and (ii) CUR, PD and QCT exerted an anti-inflammatory effect on sMSCs, and also synergized with OA and VK2 in promoting the expression of the pivotal osteogenic marker ALP in these cells. Overall, these data suggest a potential role of using a combination of all of these natural compounds as a supplement to prevent or control the progression of age-related osteoporosis.


Asunto(s)
Enfermedades Óseas Metabólicas , Curcumina , Células Madre Mesenquimatosas , Osteoporosis , Humanos , Osteogénesis , Quercetina/uso terapéutico , Vitamina K 2/farmacología , Vitamina K 2/metabolismo , Curcumina/farmacología , Médula Ósea/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Enfermedades Óseas Metabólicas/metabolismo , Células Cultivadas , Células de la Médula Ósea
16.
World J Microbiol Biotechnol ; 39(8): 224, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37291450

RESUMEN

Menaquinone-7 (MK-7), a valuable member of the vitamin K2 series, is an essential nutrient for humans. It is used for treating coagulation disorders, and osteoporosis, promoting liver function recovery, and preventing cardiovascular diseases. In this study, to further improve the metabolic synthesis of MK-7 by the mutant strain, the effect of surfactants on the metabolic synthesis of MK-7 by the mutant strain Bacillus subtilis 168 KO-SinR (BS168 KO-SinR) was analyzed. The scanning electron microscopy and flow cytometry results showed that the addition of surfactants changed the permeability of the cell membrane of the mutant strain and the structural components of the biofilm. When 0.7% Tween-80 was added into the medium, the extracellular and intracellular synthesis of MK-7 reached 28.8 mg/L and 59.2 mg/L, respectively, increasing the total synthesis of MK-7 by 80.3%. Quantitative real-time PCR showed that the addition of surfactant significantly increased the expression level of MK-7 synthesis-related genes, and the electron microscopy results showed that the addition of surfactant changed the permeability of the cell membrane. The research results of this paper can serve as a reference for the industrial development of MK-7 prepared by fermentation.


Asunto(s)
Bacillus subtilis , Tensoactivos , Humanos , Vitamina K 2/metabolismo , Fermentación , Bacillus subtilis/metabolismo , Tensoactivos/metabolismo , Biopelículas
17.
Trends Biochem Sci ; 43(5): 342-357, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29573882

RESUMEN

The menaquinone, siderophore, and tryptophan (MST) enzymes transform chorismate to generate precursor molecules for the biosynthetic pathways defined in their name. Kinetic data, both steady-state and transient-state, and X-ray crystal structures indicate that these enzymes are highly conserved both in mechanism and in structure. Because these enzymes are found in pathogens but not in humans, there is considerable interest in these enzymes as drug design targets. While great progress has been made in defining enzyme structure and mechanism, inhibitor design has lagged behind. This review provides a detailed description of the evidence that begins to unravel the mystery of how the MST enzymes work, and how that information has been used in inhibitor design.


Asunto(s)
Liasas/metabolismo , Sideróforos/metabolismo , Triptófano/metabolismo , Vitamina K 2/metabolismo , Humanos , Cinética , Liasas/química , Modelos Moleculares , Sideróforos/química , Triptófano/química , Vitamina K 2/química
18.
Kidney Int ; 101(2): 338-348, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34774554

RESUMEN

Chronic kidney disease (CKD) is accompanied with extensive cardiovascular calcification, in part correlating with functional vitamin K deficiency. Here, we sought to determine causes for vitamin K deficiency beyond reduced dietary intake. Initially, vitamin K uptake and distribution into circulating lipoproteins after a single administration of vitamin K1 plus K2 (menaquinone 4 and menaquinone 7, respectively) was determined in patients on dialysis therapy and healthy individuals. The patients incorporated very little menaquinone 7 but more menaquinone 4 into high density lipoprotein (HDL) and low-density lipoprotein particles than did healthy individuals. In contrast to healthy persons, HDL particles from the patients could not be spiked with menaquinone 7 in vitro and HDL uptake was diminished in osteoblasts. A reduced carboxylation activity (low vitamin K activity) of uremic HDL particles spiked with menaquinone 7 vs. that of controls was confirmed in a bioassay using human primary vascular smooth muscle cells. Kidney menaquinone 4 tissue levels were reduced in 5/6-nephrectomized versus sham-operated C57BL/6 mice after four weeks of a vitamin K rich diet. From the analyzed enzymes involved in vitamin K metabolism, kidney HMG-CoA reductase protein was reduced in both rats and patients with CKD. In a trial on the efficacy and safety of atorvastatin in 1051 patients with type 2 diabetes receiving dialysis therapy, no pronounced vitamin K deficiency was noted. However, the highest levels of PIVKA-II (biomarker of subclinical vitamin K deficiency) were noted when a statin was combined with a proton pump inhibitor. Thus, profound disturbances in lipoprotein mediated vitamin K transport and metabolism in uremia suggest that menaquinone 7 supplementation to patients on dialysis therapy has reduced efficacy.


Asunto(s)
Insuficiencia Renal Crónica , Deficiencia de Vitamina K , Vitamina K/metabolismo , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratas , Insuficiencia Renal Crónica/metabolismo , Distribución Tisular , Vitamina K/uso terapéutico , Vitamina K 1/metabolismo , Vitamina K 1/uso terapéutico , Vitamina K 2/metabolismo , Vitamina K 2/uso terapéutico , Deficiencia de Vitamina K/complicaciones , Deficiencia de Vitamina K/metabolismo
19.
Antimicrob Agents Chemother ; 66(9): e0017122, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35969044

RESUMEN

Tuberculosis remains a public health crisis and a health security threat. There is an urgent need to develop new antituberculosis drugs with novel modes of action to cure drug-resistant tuberculosis and shorten the chemotherapy period by sterilizing tissues infected with dormant bacteria. Lysocin E is an antibiotic that showed antibacterial activity against Staphylococcus aureus by binding to its menaquinone (commonly known as vitamin K2). Unlike S. aureus, menaquinone is essential in both growing and dormant Mycobacterium tuberculosis. This study aims to evaluate the antituberculosis activities of lysocin E and decipher its mode of action. We show that lysocin E has high in vitro activity against both drug-susceptible and drug-resistant Mycobacterium tuberculosis var. tuberculosis and dormant mycobacteria. Lysocin E is likely bound to menaquinone, causing M. tuberculosis membrane disruption, inhibition of oxygen consumption, and ATP synthesis. Thus, we have concluded that the high antituberculosis activity of lysocin E is attributable to its synergistic effects of membrane disruption and respiratory inhibition. The efficacy of lysocin E against intracellular M. tuberculosis in macrophages was lower than its potent activity against M. tuberculosis in culture medium, probably due to its low ability to penetrate cells, but its efficacy in mice was still superior to that of streptomycin. Our findings indicate that lysocin E is a promising lead compound for the development of a new tuberculosis drug that cures drug-resistant and latent tuberculosis in a shorter period.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Péptidos Cíclicos , Adenosina Trifosfato/metabolismo , Animales , Antituberculosos/química , Antituberculosos/farmacología , Ratones , Mycobacterium tuberculosis/efectos de los fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Staphylococcus aureus/metabolismo , Estreptomicina/farmacología , Tuberculosis , Vitamina K 2/metabolismo
20.
Microbiology (Reading) ; 168(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35575764

RESUMEN

A previous study reported that the Mycobacterium smegmatis (Msm) protein MSMEG_2295 is a repressor controlling the expression of several genes, including that for MSMEG_5125, a putative isoprenoid binding protein belonging to the YceI family, and DinB2, a DNA damage repair enzyme. This repressor is encoded by the first gene of the operon that also expresses the gene for DinB2. Targeted inhibition of MSMEG_5125 using CRISPRi technology resulted in a significant loss of Msm's respiratory activity and viability. Since this protein has been predicted to be an isoprenoid binding protein, we suspected a role of menaquinones, which are isoprenoid naphthoquinones, in the observed phenomenon. Accordingly, we tested whether MSMEG_5125's deficiency-induced lethality could be reversed by adding menaquinone. The result was positive, implying cooperation between MSMEG_5125 and menaquinone in bringing about respiration. Inhibition of MSMEG_5125 expression led to the induction of MSMEG_0089 and 2296, two hallmark genes of the MSMEG_2295 regulon. This result suggests that when MSMEG_5125 becomes limiting, a feedback-loop derepresses the MSMEG_2295 regulon genes, including its own. Interestingly, menaquinone functioned as an inducer of MSMEG_5125, indicating that it is likely to mediate the feedback mechanism. This result also strengthens our hypothesis that the functions of menaquinone and MSMEG_5125 are interrelated. Menaquinone also induced the MSMEG_2295-controlled operon MSMEG_2295-2294 (dinB2) not induced following the inactivation of MSMEG_5125. Therefore, the activation mechanism of MSMEG_2295-regulated genes may not be the same for all, although derepression is likely to be a common feature. In vitro, menaquinone abolished MSMEG_2295's DNA binding activity by interacting with it, confirming its role as an inducer. Therefore, a menaquinone-MSMEG_5125-regulated gene expression circuit controls Msm respiration and possibly oxidative stress-induced DNA damage repair.


Asunto(s)
Proteínas Bacterianas , Mycobacterium smegmatis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/metabolismo , Operón , Regulón , Vitamina K 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA