RESUMEN
Although fat is a crucial source of energy in diets, excessive intake leads to obesity. Fat absorption in the gut is prevailingly thought to occur organ-autonomously by diffusion1-3. Whether the process is controlled by the brain-to-gut axis, however, remains largely unknown. Here we demonstrate that the dorsal motor nucleus of vagus (DMV) plays a key part in this process. Inactivation of DMV neurons reduces intestinal fat absorption and consequently causes weight loss, whereas activation of the DMV increases fat absorption and weight gain. Notably, the inactivation of a subpopulation of DMV neurons that project to the jejunum shortens the length of microvilli, thereby reducing fat absorption. Moreover, we identify a natural compound, puerarin, that mimics the suppression of the DMV-vagus pathway, which in turn leads to reduced fat absorption. Photoaffinity chemical methods and cryogenic electron microscopy of the structure of a GABAA receptor-puerarin complex reveal that puerarin binds to an allosteric modulatory site. Notably, conditional Gabra1 knockout in the DMV largely abolishes puerarin-induced intestinal fat loss. In summary, we discover that suppression of the DMV-vagus-jejunum axis controls intestinal fat absorption by shortening the length of microvilli and illustrate the therapeutic potential of puerarin binding to GABRA1 in fat loss.
Asunto(s)
Eje Cerebro-Intestino , Grasas , Absorción Intestinal , Animales , Masculino , Ratones , Eje Cerebro-Intestino/efectos de los fármacos , Eje Cerebro-Intestino/fisiología , Grasas/metabolismo , Absorción Intestinal/efectos de los fármacos , Isoflavonas/metabolismo , Isoflavonas/farmacología , Yeyuno/efectos de los fármacos , Yeyuno/inervación , Yeyuno/metabolismo , Ratones Endogámicos C57BL , Microvellosidades/efectos de los fármacos , Microvellosidades/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Obesidad/metabolismo , Receptores de GABA-A/deficiencia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Nervio Vago/metabolismo , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología , Aumento de Peso/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Bulbo Raquídeo/citología , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/metabolismoRESUMEN
Circadian rhythms regulate diverse aspects of gastrointestinal physiology ranging from the composition of microbiota to motility. However, development of the intestinal circadian clock and detailed mechanisms regulating circadian physiology of the intestine remain largely unknown. In this report, we show that both pluripotent stem cell-derived human intestinal organoids engrafted into mice and patient-derived human intestinal enteroids possess circadian rhythms and demonstrate circadian phase-dependent necrotic cell death responses to Clostridium difficile toxin B (TcdB). Intriguingly, mouse and human enteroids demonstrate anti-phasic necrotic cell death responses to TcdB. RNA-Seq analysis shows that ~3-10% of the detectable transcripts are rhythmically expressed in mouse and human enteroids. Remarkably, we observe anti-phasic gene expression of Rac1, a small GTPase directly inactivated by TcdB, between mouse and human enteroids, and disruption of Rac1 abolishes clock-dependent necrotic cell death responses. Our findings uncover robust functions of circadian rhythms regulating clock-controlled genes in both mouse and human enteroids governing organism-specific, circadian phase-dependent necrotic cell death responses, and lay a foundation for human organ- and disease-specific investigation of clock functions using human organoids for translational applications.
Asunto(s)
Relojes Circadianos , Yeyuno/citología , Organoides/metabolismo , Animales , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Muerte Celular , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Organoides/efectos de los fármacos , Organoides/fisiología , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismoRESUMEN
Pigs are the most suitable model to study various therapeutic strategies and drugs for human beings, although knowledge about cell type-specific transcriptomes and heterogeneity is poorly available. Through single-cell RNA sequencing and flow cytometry analysis of the types in the jejunum of pigs, we found that innate lymphoid cells (ILCs) existed in the lamina propria lymphocytes (LPLs) of the jejunum. Then, through flow sorting of live/dead-lineage (Lin)-CD45+ cells and single-cell RNA sequencing, we found that ILCs in the porcine jejunum were mainly ILC3s, with a small number of NK cells, ILC1s, and ILC2s. ILCs coexpressed IL-7Rα, ID2, and other genes and differentially expressed RORC, GATA3, and other genes but did not express the CD3 gene. ILC3s can be divided into four subgroups, and genes such as CXCL8, CXCL2, IL-22, IL-17, and NCR2 are differentially expressed. To further detect and identify ILC3s, we verified the classification of ILCs in the porcine jejunum subgroup and the expression of related hallmark genes at the protein level by flow cytometry. For systematically characterizing ILCs in the porcine intestines, we combined our pig ILC dataset with publicly available human and mice ILC data and identified that the human and pig ILCs shared more common features than did those mouse ILCs in gene signatures and cell states. Our results showed in detail for the first time (to our knowledge) the gene expression of porcine jejunal ILCs, the subtype classification of ILCs, and the markers of various ILCs, which provide a basis for an in-depth exploration of porcine intestinal mucosal immunity.
Asunto(s)
Inmunidad Innata , Linfocitos , Humanos , Animales , Ratones , Porcinos , Yeyuno , Células Asesinas Naturales , Membrana MucosaRESUMEN
In maintaining organismal homeostasis, gut immunity plays a crucial role. The coordination between the microbiota and the immune system through bidirectional interactions regulates the impact of microorganisms on the host. Our research focused on understanding the relationships between substantial changes in jejunal intestinal flora and metabolites and intestinal immunity during porcine epidemic diarrhea virus (PEDV) infection in piglets. We discovered that Lactobacillus rhamnosus GG (LGG) could effectively prevent PEDV infection in piglets. Further investigation revealed that LGG metabolites interact with type 3 innate lymphoid cells (ILC3s) in the jejunum of piglets through the aryl hydrocarbon receptor (AhR). This interaction promotes the activation of ILC3s and the production of interleukin-22 (IL-22). Subsequently, IL-22 facilitates the proliferation of IPEC-J2 cells and activates the STAT3 signaling pathway, thereby preventing PEDV infection. Moreover, the AhR receptor influences various cell types within organoids, including intestinal stem cells (ISCs), Paneth cells, and enterocytes, to promote their growth and development, suggesting that AhR has a broad impact on intestinal health. In conclusion, our study demonstrated the ability of LGG to modulate intestinal immunity and effectively prevent PEDV infection in piglets. These findings highlight the potential application of LGG as a preventive measure against viral infections in livestock.IMPORTANCEWe observed high expression of the AhR receptor on pig and human ILC3s, although its expression was negligible in mouse ILC3s. ILC3s are closely related to the gut microbiota, particularly the secretion of IL-22 stimulated by microbial signals, which plays a crucial regulatory role in intestinal immunity. In our study, we found that metabolites produced by beneficial gut bacteria interact with ILC3s through AhR, thereby maintaining intestinal immune homeostasis in pigs. Moreover, LGG feeding can enhance the activation of ILC3s and promote IL-22 secretion in the intestines of piglets, ultimately preventing PEDV infection.
Asunto(s)
Infecciones por Coronavirus , Inmunidad Innata , Interleucina-22 , Interleucinas , Linfocitos , Virus de la Diarrea Epidémica Porcina , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Porcinos , Interleucinas/metabolismo , Virus de la Diarrea Epidémica Porcina/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/metabolismo , Microbioma Gastrointestinal/inmunología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/microbiología , Yeyuno/inmunología , Yeyuno/metabolismo , Transducción de Señal , Ligandos , Intestinos/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismoRESUMEN
Human noroviruses (HuNoVs) are a diverse group of RNA viruses that cause endemic and pandemic acute viral gastroenteritis. Previously, we reported that many HuNoV strains require bile or bile acid (BA) to infect human jejunal intestinal enteroid cultures. BA was not essential for the replication of a pandemic-causing GII.4 HuNoV strain. We found the hydrophobic BA glycochenodeoxycholic acid (GCDCA) promotes the replication of the BA-dependent strain GII.3 in jejunal enteroids. Furthermore, we found that inhibition of the G-protein-coupled BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), by JTE-013, reduced GII.3 infection dose-dependently and inhibited GII.3 cellular uptake in enteroids. Herein, we sought to determine whether S1PR2 is required for other BA-dependent HuNoV strains, the BA-independent GII.4, and whether S1PR2 is required for BA-dependent HuNoV infection in HIEs from other small intestinal segments. We found a second S1PR2 inhibitor, GLPG2938, reduces GII.3 infection dose-dependently, and an S1PR2 agonist (CYM-5520) enhances GII.3 replication in the absence of GCDCA. GII.3 replication also is abrogated in the presence of JTE-013 and CYM-5520. JTE-013 inhibition of S1PR2 in jejunal HIEs reduces GI.1, GII.3, and GII.17 (BA-dependent) but not GII.4 Sydney (BA-independent) infection, providing additional evidence of strain-specific differences in HuNoV infection. Finally, GII.3 infection of duodenal, jejunal, and ileal lines derived from the same individual is reduced with S1PR2 inhibition, indicating a common mechanism of BA-dependent infection among multiple segments of the small intestine. Our results support a model where BA-dependent HuNoVs exploit BA effects on S1PR2 to infect the entire small intestine.IMPORTANCEHuman noroviruses (HuNoVs) are important viral human pathogens that cause both outbreaks and sporadic gastroenteritis. These viruses are diverse, and many strains are capable of infecting humans. Our previous studies have identified strain-specific requirements for hydrophobic bile acids (BAs) to infect intestinal epithelial cells. Moreover, we identified a BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), required for infection by a BA-dependent strain. To better understand how various HuNoV strains enter and infect the small intestine and the role of S1PR2 in HuNoV infection, we evaluated infection by additional HuNoV strains using an expanded repertoire of intestinal enteroid cell lines. We found that multiple BA-dependent strains, but not a BA-independent strain, all require S1PR2 for infection. In addition, BA-dependent infection requires S1PR2 in multiple segments of the small intestine. Together, these results indicate that S1PR2 has value as a potential therapeutic target for BA-dependent HuNoV infection.
Asunto(s)
Ácidos y Sales Biliares , Norovirus , Receptores de Esfingosina-1-Fosfato , Replicación Viral , Humanos , Norovirus/efectos de los fármacos , Norovirus/fisiología , Norovirus/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Ácidos y Sales Biliares/farmacología , Ácidos y Sales Biliares/metabolismo , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/metabolismo , Piridinas/farmacología , Gastroenteritis/virología , Yeyuno/virología , Yeyuno/metabolismo , Organoides/virología , Organoides/metabolismo , PirazolesRESUMEN
The metabolic contribution of the small intestine (SI) is still unclear despite recent studies investigating the involvement of single cells in regional differences. Using untargeted proteomics, we identified regional characteristics of the three intestinal tracts of C57BL/6J mice and found that proteins abundant in the mouse ileum correlated with the high ileal expression of the corresponding genes in humans. In the SI of C57BL/6J mice, we also detected an increasing abundance of lysosomal acid lipase (LAL), which is responsible for degrading triacylglycerols and cholesteryl esters within the lysosome. LAL deficiency in patients and mice leads to lipid accumulation, gastrointestinal disturbances, and malabsorption. We previously demonstrated that macrophages massively infiltrated the SI of Lal-deficient (KO) mice, especially in the duodenum. Using untargeted proteomics (ProteomeXchange repository, data identifier PXD048378), we revealed a general inflammatory response and a common lipid-associated macrophage phenotype in all three intestinal segments of Lal KO mice, accompanied by a higher expression of GPNMB and concentrations of circulating sTREM2. However, only duodenal macrophages activated a metabolic switch from lipids to other pathways, which were downregulated in the jejunum and ileum of Lal KO mice. Our results provide new insights into the process of absorption in control mice and possible novel markers of LAL-D and/or systemic inflammation in LAL-D.
Asunto(s)
Proteoma , Esterol Esterasa , Animales , Ratones , Ésteres del Colesterol/metabolismo , Yeyuno , Glicoproteínas de Membrana , Ratones Endogámicos C57BL , Proteoma/genética , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , HumanosRESUMEN
Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.
Asunto(s)
Antígenos de Grupos Sanguíneos , Infecciones por Caliciviridae , Fucosa , Glicoproteínas , Antígenos de Histocompatibilidad , Yeyuno , Organoides , Glicómica , Proteómica , Genotipo , Fenotipo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Fucosa/metabolismo , Glicosilación , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , Humanos , Glicopéptidos/química , Infecciones por Caliciviridae/sangre , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/metabolismo , Organoides/metabolismo , Yeyuno/metabolismo , Yeyuno/virologíaRESUMEN
Modern broiler breeds allow for high feed efficiency and rapid growth, which come at a cost of increased susceptibility to pathogens and disease. Broiler growth rate, feed efficiency, and health are affected by the composition of the gut microbiota, which in turn is influenced by diet. In this study, we therefore assessed how diet composition can affect the broiler jejunal gut microbiota. A total of 96 broiler chickens were divided into four diet groups: control, coated butyrate supplementation, medium-chain fatty acid supplementation, or a high-fibre low-protein content. Diet groups were sub-divided into age groups (4, 12 and 33 days of age) resulting in groups of 8 broilers per diet per age. The jejunum content was used for metagenomic shotgun sequencing to determine the microbiota taxonomic composition at species level. The composed diets resulted in a total of 104 differentially abundant bacterial species. Most notably were the butyrate-induced changes in the jejunal microbiota of broilers 4 days post-hatch, resulting in the reduced relative abundance of mainly Enterococcus faecium (-1.8 l2fc, Padj = 9.9E-05) and the opportunistic pathogen Enterococcus hirae (-2.9 l2fc, Padj = 2.7E-08), when compared to the control diet. This effect takes place during early broiler development, which is critical for broiler health, thus exemplifying the importance of how diet can influence the microbiota composition in relation to broiler health. Future studies should therefore elucidate how diet can be used to promote a beneficial microbiota in the early stages of broiler development.
Asunto(s)
Alimentación Animal , Pollos , Enterococcus faecium , Enterococcus hirae , Microbioma Gastrointestinal , Yeyuno , Animales , Pollos/microbiología , Pollos/crecimiento & desarrollo , Enterococcus faecium/genética , Microbioma Gastrointestinal/efectos de los fármacos , Yeyuno/microbiología , Dieta/veterinaria , Metagenómica/métodos , Suplementos DietéticosRESUMEN
The motility of the gastrointestinal tract is coordinated in part by rhythmic slow waves, and disrupted slow-wave patterns are linked to functional motility disorders. At present, there are no treatment strategies that primarily target slow-wave activity. This study assessed the use of pacing to suppress glucagon-induced slow-wave dysrhythmias in the small intestine. Slow waves in the jejunum were mapped in vivo using a high-resolution surface-contact electrode array in pigs (n = 7). Glucagon was intravenously administered to induce hyperglycemia. Slow-wave propagation patterns were categorized into antegrade, retrograde, collision, pacemaker, and uncoupled activity. Slow-wave characteristics such as period, amplitude, and speed were also quantified. Postglucagon infusion, pacing was applied at 4 mA and 8 mA and the resulting slow waves were quantified spatiotemporally. Antegrade propagation was dominant throughout all stages with a prevalence of 55 ± 38% at baseline. However, glucagon infusion resulted in a substantial and significant increase in uncoupled slow waves from 10 ± 8% to 30 ± 12% (P = 0.004) without significantly altering the prevalence of other slow-wave patterns. Slow-wave frequency, amplitude, and speed remained unchanged. Pacing, particularly at 8 mA, significantly suppressed dysrhythmic slow-wave patterns and achieved more effective spatial entrainment (85%) compared with 4 mA (46%, P = 0.039). This study defined the effect of glucagon on jejunal slow waves and identified uncoupling as a key dysrhythmia signature. Pacing effectively entrained rhythmic activity and suppressed dysrhythmias, highlighting the potential of pacing for gastrointestinal disorders associated with slow-wave abnormalities.NEW & NOTEWORTHY Glucagon was infused in pigs to induce hyperglycemia and the resulting slow-wave response in the intact jejunum was defined in high resolution for the first time. Subsequently, with pacing, the glucagon-induced dysrhythmias were suppressed and spatially entrained for the first time with a success rate of 85%. The ability to suppress slow-wave dysrhythmias through pacing is promising in treating motility disorders that are associated with intestinal dysrhythmias.
Asunto(s)
Motilidad Gastrointestinal , Glucagón , Yeyuno , Animales , Porcinos , Motilidad Gastrointestinal/fisiología , Yeyuno/fisiopatología , Intestino Delgado/fisiopatología , Femenino , Hiperglucemia/terapia , MasculinoRESUMEN
Ischemic damage to the intestinal epithelial barrier, such as in necrotizing enterocolitis or small intestinal volvulus, is associated with higher mortality rates in younger patients. We have recently reported a powerful pig model to investigate these age-dependent outcomes in which mucosal barrier restitution is strikingly absent in neonates but can be rescued by direct application of homogenized mucosa from older, juvenile pigs by a yet-undefined mechanism. Within the mucosa, a postnatally developing network of enteric glial cells (EGCs) is gaining recognition as a key regulator of the mucosal barrier. Therefore, we hypothesized that the developing EGC network may play an important role in coordinating intestinal barrier repair in neonates. Neonatal and juvenile jejunal mucosa recovering from surgically induced intestinal ischemia was visualized by scanning electron microscopy and the transcriptomic phenotypes were assessed by bulk RNA sequencing. EGC network density and glial activity were examined by Gene Set Enrichment Analysis, three-dimensional (3-D) volume imaging, and Western blot and its function in regulating epithelial restitution was assessed ex vivo in Ussing chamber using the glia-specific inhibitor fluoroacetate (FA), and in vitro by coculture assay. Here we refine and elaborate our translational model, confirming a neonatal phenotype characterized by a complete lack of coordinated reparative signaling in the mucosal microenvironment. Furthermore, we report important evidence that the subepithelial EGC network changes significantly over the early postnatal period and demonstrate that the proximity of a specific functional population of EGC to wounded intestinal epithelium contributes to intestinal barrier restitution following ischemic injury.NEW & NOTEWORTHY This study refines a powerful translational pig model, defining an age-dependent relationship between enteric glia and the intestinal epithelium during intestinal ischemic injury and confirming an important role for enteric glial cell (EGC) activity in driving mucosal barrier restitution. This study suggests that targeting the enteric glial network could lead to novel interventions to improve recovery from intestinal injury in neonatal patients.
Asunto(s)
Intestino Delgado , Neuroglía , Humanos , Animales , Recién Nacido , Porcinos , Neuroglía/fisiología , Intestinos , Mucosa Intestinal , Yeyuno , IsquemiaRESUMEN
BACKGROUND: Necrotic enteritis (NE) is a severe intestinal infection that affects both humans and poultry. It is caused by the bacterium Clostridium perfringens (CP), but the precise mechanisms underlying the disease pathogenesis remain elusive. This study aims to develop an NE broiler chicken model, explore the impact of the microbiome on NE pathogenesis, and study the virulence of CP isolates with different toxin gene combinations. METHODS: This study established an animal disease model for NE in broiler chickens. The methodology encompassed inducing abrupt protein changes and immunosuppression in the first experiment, and in the second, challenging chickens with CP isolates containing various toxin genes. NE was evaluated through gross and histopathological scoring of the jejunum. Subsequently, jejunal contents were collected from these birds for microbiome analysis via 16S rRNA amplicon sequencing, followed by sequence analysis to investigate microbial diversity and abundance, employing different bioinformatic approaches. RESULTS: Our findings reveal that CP infection, combined with an abrupt increase in dietary protein concentration and/or infection with the immunosuppressive variant infectious bursal disease virus (vIBDV), predisposed birds to NE development. We observed a significant decrease (p < 0.0001) in the abundance of Lactobacillus and Romboutsia genera in the jejunum, accompanied by a notable increase (p < 0.0001) in Clostridium and Escherichia. Jejunal microbial dysbiosis and severe NE lesions were particularly evident in birds infected with CP isolates containing cpa, netB, tpeL, and cpb2 toxin genes, compared to CP isolates with other toxin gene combinations. Notably, birds that did not develop clinical or subclinical NE following CP infection exhibited a significantly higher (p < 0.0001) level of Romboutsia. These findings shed light on the complex interplay between CP infection, the gut microbiome, and NE pathogenesis in broiler chickens. CONCLUSION: Our study establishes that dysbiosis within the jejunal microbiome serves as a reliable biomarker for detecting subclinical and clinical NE in broiler chicken models. Additionally, we identify the potential of the genera Romboutsia and Lactobacillus as promising candidates for probiotic development, offering effective alternatives to antibiotics in NE prevention and control.
Asunto(s)
Infecciones por Clostridium , Enteritis , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Humanos , Animales , Clostridium perfringens/genética , Pollos/genética , ARN Ribosómico 16S/genética , Disbiosis , Yeyuno/química , Yeyuno/patología , Enteritis/microbiología , Enteritis/patología , Enteritis/veterinaria , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/patología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/patologíaRESUMEN
Compound probiotics have been widely used and commonly coadministered with other drugs for treating various chronic illnesses, yet their effects on drug pharmacokinetics remain underexplored. This study elucidated the impact of VSL#3 on the metabolism of probe drugs for cytochrome P450 enzymes (P450s), specifically omeprazole, tolbutamide, midazolam, metoprolol, phenacetin, and chlorzoxazone. Male Wistar rats were administered drinking water containing VSL#3 or not for 14 days and then intragastrically administered a P450 probe cocktail; this was done to investigate the host P450's metabolic phenotype. Stool, liver/jejunum, and serum samples were collected for 16S ribosomal RNA sequencing, RNA sequencing, and bile acid profiling. The results indicated significant differences in both α and ß diversity of intestinal microbial composition between the probiotic and vehicle groups in rats. In the probiotic group, the bioavailability of omeprazole increased by 269.9%, whereas those of tolbutamide and chlorpropamide decreased by 28.1% and 27.4%, respectively. The liver and jejunum exhibited 1417 and 4004 differentially expressed genes, respectively, between the two groups. In the probiotic group, most of P450 genes were upregulated in the liver but downregulated in the jejunum. The expression of genes encoding metabolic enzymes and drug transporters also changed. The serum-conjugated bile acids in the probiotic group were significantly reduced. Shorter duodenal villi and longer ileal villi were found in the probiotic group. In summary, VSL#3 administration altered the gut microbiota, host drug-processing gene expression, and intestinal structure in rats, which could be reasons for pharmacokinetic changes. SIGNIFICANCE STATEMENT: This study focused on the effects of the probiotic VSL#3 on the pharmacokinetic profile of cytochrome P450 probe drugs and the expression of host drug metabolism genes. Compared with previous studies, the present study provides a comprehensive explanation for the host drug metabolism profile modified by probiotics, combined here with the bile acid profile and histopathological analysis.
Asunto(s)
Sistema Enzimático del Citocromo P-450 , Probióticos , Animales , Masculino , Ratas , Ácidos y Sales Biliares/metabolismo , Disponibilidad Biológica , Sistema Enzimático del Citocromo P-450/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Yeyuno/metabolismo , Yeyuno/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Probióticos/farmacocinética , Probióticos/administración & dosificación , Probióticos/farmacología , Ratas WistarRESUMEN
The purpose of this study was to evaluate the ability of Bacillus subtilis JATP3 to stimulate immune response and improve intestinal health in piglets during the critical weaning period. Twelve 28-day-old weaned piglets were randomly divided into two groups. One group was fed a basal diet, while the other group was fed a basal diet supplemented with B. subtilis JATP3 (1 × 109 CFU/mL; 10 mL) for 28 days. The results revealed a significant increase in the intestinal villus gland ratio of weaned piglets following the inclusion of B. subtilis JATP3 (P < 0.05). Inclusion of a probiotic supplement improve the intestinal flora of jejunum and ileum of weaned piglets. Metabolomics analysis demonstrated a notable rise in citalopram levels in the jejunum and ileum, along with elevated levels of isobutyric acid and isocitric acid in the ileum. The results of correlation analysis show that indicated a positive correlation between citalopram and microbial changes. Furthermore, the probiotic-treated group exhibited a significant upregulation in the relative expression of Claudin, Zonula Occludens 1 (ZO-1), and Interleukin 10 (IL-10) in the jejunum and ileum, while displaying a noteworthy reduction in the relative expression of Interleukin 1ß (IL-1ß). Overall, these findings suggest that B. subtilis JATP3 can safeguard intestinal health by modulating the structure of the intestinal microbiota and their metabolites, wherein citalopram might be a key component contributing to the therapeutic effects of B. subtilis JATP3.
Asunto(s)
Bacillus subtilis , Citalopram , Microbioma Gastrointestinal , Íleon , Yeyuno , Probióticos , Destete , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Bacillus subtilis/metabolismo , Porcinos , Probióticos/administración & dosificación , Probióticos/farmacología , Íleon/microbiología , Íleon/inmunología , Citalopram/farmacología , Yeyuno/microbiología , Yeyuno/inmunología , Yeyuno/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Metabolómica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Proteína de la Zonula Occludens-1/metabolismo , Suplementos DietéticosRESUMEN
Necrotic enteritis (NE) is a potentially fatal poultry disease that causes enormous economic losses in the poultry industry worldwide. The study aimed to evaluate the effects of dietary organic yeast-derived selenium (Se) on immune protection against experimental necrotic enteritis (NE) in commercial broilers. Chickens were fed basal diets supplemented with different Se levels (0.25, 0.50, and 1.00 Se mg/kg). To induce NE, Clostridium perfringens (C. perfringens) was orally administered at 14 days of age post hatch. The results showed that birds fed 0.25 Se mg/kg exhibited significantly increased body weight gain compared with the non-supplemented/infected birds. There were no significant differences in gut lesions between the Se-supplemented groups and the non-supplemented group. The antibody levels against α-toxin and NetB toxin increased with the increase between 0.25 Se mg/kg and 0.50 Se mg/kg. In the jejunal scrapings and spleen, the Se-supplementation groups up-regulated the transcripts for pro-inflammatory cytokines IL-1ß, IL-6, IL-8, iNOS, and LITAF and avian ß-defensin 6, 8, and 13 (AvBD6, 8 and 13). In conclusion, supplementation with organic yeast-derived Se alleviates the negative consequences and provides beneficial protection against experimental NE.
Asunto(s)
Alimentación Animal , Pollos , Infecciones por Clostridium , Clostridium perfringens , Citocinas , Suplementos Dietéticos , Enteritis , Enfermedades de las Aves de Corral , Selenio , Animales , Enteritis/prevención & control , Enteritis/veterinaria , Enteritis/inmunología , Enteritis/microbiología , Selenio/farmacología , Selenio/administración & dosificación , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/inmunología , Clostridium perfringens/inmunología , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/inmunología , Citocinas/metabolismo , Toxinas Bacterianas/inmunología , Necrosis , beta-Defensinas/metabolismo , Yeyuno/efectos de los fármacos , Yeyuno/inmunología , Yeyuno/microbiología , Yeyuno/patología , Bazo/inmunología , Levaduras , Óxido Nítrico Sintasa de Tipo II/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Interleucina-1beta/metabolismo , Anticuerpos Antibacterianos/sangreRESUMEN
INTRODUCTION: Sufficient perfusion is essential for a safe intestinal anastomosis. Impaired microcirculation may lead to increased bacterial translocation and anastomosis insufficiency. Thus, it is important to estimate well the optimal distance of the anastomosis line from the last mesenterial vessel. However, it is still empiric. In this experiment the aim was to investigate the intestinal microcirculation at various distances from the anastomosis in a pig model. MATERIALS AND METHODS: On 8 anesthetized pigs paramedian laparotomy and end-to-end jejuno-jejunostomy were performed. Using Cytocam-IDF camera, microcirculatory recordings were taken before surgery at the planned suture line, and 1 to 3 mesenterial vessel mural trunk distance from it, and at the same sites 15 and 120 min after anastomosis completion. After the microcirculation monitoring, anastomosed and intact bowel segments were removed to test tensile strength. RESULTS: The proportion and the density of the perfused vessels decreased significantly after anastomosis completion. The perfusion rate increased gradually distal from the anastomosis, and after 120 min these values seemed to be normalized. Anastomosed bowels had significantly lower maximal tensile strength and higher slope of tensile strength curves than intact controls. CONCLUSION: Alterations in microcirculation and tensile strength were observed. After completing the anastomosis, the improvement in perfusion increased gradually away from the wound edge. The IDF device was useful to monitor intestinal microcirculation providing data to estimate better the optimal distance of the anastomosis from the last order mesenteric vessel.
Asunto(s)
Anastomosis Quirúrgica , Microcirculación , Modelos Animales , Sus scrofa , Resistencia a la Tracción , Animales , Factores de Tiempo , Yeyunostomía , Flujo Sanguíneo Regional , Yeyuno/irrigación sanguínea , Yeyuno/cirugía , Velocidad del Flujo Sanguíneo , Intestino Delgado/irrigación sanguínea , Intestino Delgado/cirugía , FemeninoRESUMEN
INTRODUCTION: Intestinal manipulation (IM)-induced inflammation could contribute to postoperative ileus (POI) pathophysiology via the modulation of prostanoid pathways. To identify the prostanoids involved, we aimed to characterize the profile of prostanoids and their synthesis enzyme expression in a murine model of POI and to determine whether the altered prostanoids could contribute to POI. METHODS: Four or 14 h after IM in mice, gastrointestinal (GI) motility and intestinal epithelial barrier (IEB) permeability were assessed in vivo and ex vivo in Ussing chambers. Using high sensitivity liquid chromatography-tandem mass spectrometry, we characterized the tissue profile of polyunsaturated fatty acid metabolites in our experimental model. Finally, we evaluated in vivo the effects of the prostanoids studied upon IM-induced gut dysfunctions. RESULTS: We first showed that 14 h after IM was significantly faster than jejunal transit at 4 h post-IM, although it remained significantly increased compared to the control. In contrast, we showed that IM-induced inflammation increase in jejunum permeability was similar after four and 14 h. We next showed that expression of prostacyclin synthase and hemopoietic prostaglandin-D synthase mRNA and their products were significantly reduced 14 h after IM as compared to controls. Furthermore, 15-deoxy-delta 12,14-Prostaglandin J2 reduced the IM-induced inflammation increase in IEB permeability but had no effect on GI motility. In contrast, PGI2 increased IM-induced IEB permeability and motility dysfunctions. CONCLUSIONS: Arachidonic acid derivative contributes differentially to GI dysfunction in POI. The decrease of 15-deoxy-delta 12,14-Prostaglandin J2 levels induced by IM could contribute to impaired GI dysfunctions in POI and could be considered as putative therapeutic targets to restore barrier dysfunctions associated with POI.
Asunto(s)
Ileus , Prostaglandinas , Ratones , Animales , Prostaglandinas/farmacología , Ileus/etiología , Motilidad Gastrointestinal , Yeyuno , Complicaciones Posoperatorias , Inflamación/metabolismoRESUMEN
INTRODUCTION: Intestinal atresia is a common cause of neonatal bowel obstruction. Atresias are often associated with other congenital anomalies. The purpose of the study was to evaluate associated anomalies, operative management, and postoperative outcomes of infants with intestinal atresia. METHODS: A review of patients presenting to a single free-standing children's hospital from March 2012 through February 2022 was performed. The variables examined were type of atresia, additional congenital anomalies, type of operative intervention, and postoperative outcomes. Standard statistical methods were utilized. RESULTS: A total of 75 patients with intestinal atresia were identified and several of these patients had multiple atresias. Isolated duodenal atresia patients were the most common (49.3%), followed by jejunal (32%) and ileal (12%). Mixed atresias were rare at 4%, with isolated pyloric and colonic also rare at 1.3% each. Malrotation was associated with 13% of patients and equally associated with duodenal and jejunoileal atresias. A low percentage (3%) of intestinal atresias was seen in conjunction with gastroschisis and concomitant malrotation. A majority of infants with duodenal atresia underwent standard duodenoduodenostomy (19% laparoscopic, 81% open). In infants with jejunoileal atresia, most underwent resection with primary anastomosis. A tapering enteroplasty was performed primarily in 13% of atresias. There were no significant differences noted in time to first feed or length of stay between those with and without tapering enteroplasty. Eleven percent of patients required subsequent intervention for stricture or small bowel obstruction. There was one death in this series. CONCLUSIONS: Consistent with other literature, duodenal atresia was the most common type of intestinal atresia. However, we demonstrated that malrotation was equally associated with duodenal and jejunoileal atresias while prior reports had shown a higher association with duodenal atresia. In our patient population, the use of tapering enteroplasty did not appear to be associated with outcomes. Overall, these infants have a low morbidity and mortality rate with a rare need for reoperation.
Asunto(s)
Obstrucción Duodenal , Atresia Intestinal , Lactante , Recién Nacido , Niño , Humanos , Atresia Intestinal/complicaciones , Atresia Intestinal/cirugía , Obstrucción Duodenal/complicaciones , Intestino Delgado , Yeyuno/cirugía , Estudios RetrospectivosRESUMEN
Endoplasmic reticulum stress (ERS) and oxidative stress (OS) are adaptive responses of the body to stressor stimulation. Although it has been verified that Trichinella spiralis (T. spiralis) can induce ERS and OS in the host, their association is still unclear. Therefore, this study explored whether T. spiralis-secreted serpin-type serine protease inhibitor (TsAdSPI) is involved in regulating the relationship between ERS and OS in the host intestine. In this study, mice jejunum and porcine small intestinal epithelial cells (IECs) were detected using qPCR, western blotting, immunohistochemistry (IHC), immunofluorescence (IF), and detection kits. The results showed that ERS- and OS-related indexes changed significantly after TsAdSPI stimulation, and Bip was located in IECs, indicating that TsAdSPI could induce ERS and OS in IECs. After the use of an ERS inhibitor, OS-related indexes were inhibited, suggesting that TsAdSPI-induced OS depends on ERS. When the three ERS signalling pathways, ATF6, IRE1, and PERK, were sequentially suppressed, OS was only regulated by the PERK pathway, and the PERK-eif2α-CHOP-ERO1α axis played a key role. Similarly, the expression of ERS-related indexes and the level of intracellular Ca2+ were inhibited after adding the OS inhibitor, and the expression of ERS-related indexes decreased significantly after inhibiting calcium transfer. This finding indicated that TsAdSPI-induced OS could affect ERS by promoting Ca2+ efflux from the endoplasmic reticulum. The detection of the ERS and OS sequences revealed that OS occurred before ERS. Finally, changes in apoptosis-related indexes were detected, and the results indicated that TsAdSPI-induced ERS and OS could regulate IEC apoptosis. In conclusion, TsAdSPI induced OS after entering IECs, OS promoted ERS by enhancing Ca2+ efflux, and ERS subsequently strengthened OS by activating the PERK-eif2α-CHOP-ERO1α axis. ERS and OS induced by TsAdSPI synergistically promoted IEC apoptosis. This study provides a foundation for exploring the invasion mechanism of T. spiralis and the pathogenesis of host intestinal dysfunction after invasion.
Asunto(s)
Estrés del Retículo Endoplásmico , Células Epiteliales , Estrés Oxidativo , Serpinas , Trichinella spiralis , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Trichinella spiralis/fisiología , Ratones , Estrés Oxidativo/efectos de los fármacos , Porcinos , Serpinas/metabolismo , Serpinas/genética , Inhibidores de Serina Proteinasa/farmacología , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Yeyuno/efectos de los fármacosRESUMEN
PURPOSE: Olmesartan medoxomil (olmesartan-MX), an ester-type prodrug of the angiotensin II receptor blocker (ARB) olmesartan, is predominantly anionic at intestinal pH. Human organic anion transporting polypeptide 2B1 (OATP2B1) is expressed in the small intestine and is involved in the absorption of various acidic drugs. This study was designed to test the hypothesis that OATP2B1-mediated uptake contributes to the enhanced intestinal absorption of olmesartan-MX, even though olmesartan itself is not a substrate of OATP2B1. METHODS: Tetracycline-inducible human OATP2B1- and rat Oatp2b1-overexpressing HEK 293 cell lines (hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293, respectively) were established to characterize OATP2B1-mediated uptake. Rat jejunal permeability was measured using Ussing chambers. ARBs were quantified by liquid chromatography-tandem mass spectrometry. RESULTS: Significant olmesartan-MX uptake was observed in hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293 cells, whereas olmesartan uptake was undetectable or much lower than olmesartan-MX uptake, respectively. Furthermore, olmesartan-MX exhibited several-fold higher uptake in Caco-2 cells and greater permeability in rat jejunum compared to olmesartan. Olmesartan-MX uptake in hOATP2B1/T-REx-293 cells and in Caco-2 cells was significantly decreased by OATP2B1 substrates/inhibitors such as 1 mM estrone-3-sulfate, 100 µM rifamycin SV, and 100 µM fluvastatin. Rat Oatp2b1-mediated uptake and rat jejunal permeability of olmesartan-MX were significantly decreased by 50 µM naringin, an OATP2B1 inhibitor. Oral administration of olmesartan-MX with 50 µM naringin to rats significantly reduced the area under the plasma concentration-time curve of olmesartan to 76.9%. CONCLUSION: Olmesartan-MX is a substrate for OATP2B1, and the naringin-sensitive transport system contributes to the improved intestinal absorption of olmesartan-MX compared with its parent drug, olmesartan.
Asunto(s)
Imidazoles , Absorción Intestinal , Olmesartán Medoxomilo , Transportadores de Anión Orgánico , Profármacos , Tetrazoles , Animales , Humanos , Absorción Intestinal/efectos de los fármacos , Olmesartán Medoxomilo/metabolismo , Profármacos/farmacocinética , Profármacos/metabolismo , Células HEK293 , Tetrazoles/farmacocinética , Tetrazoles/metabolismo , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/antagonistas & inhibidores , Masculino , Imidazoles/farmacocinética , Imidazoles/metabolismo , Ratas , Ratas Sprague-Dawley , Yeyuno/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacocinética , Bloqueadores del Receptor Tipo 1 de Angiotensina II/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Permeabilidad/efectos de los fármacos , Células CACO-2RESUMEN
BACKGROUND: The primary objective of this study is to comparatively assess the safety of nasogastric (NG) feeding versus nasojejunal (NJ) feeding in patients with acute pancreatitis (AP), with a special focus on the initiation of these feeding methods within the first 48 h of hospital admission. METHODS: Studies were identified through a systematic search in PubMed, EMbase, Cochrane Central Register of Controlled Trials, and Web of Science. Four studies involving 217 patients were included. This systematic review assesses the safety and efficacy of nasogastric versus nasojejunal feeding initiated within 48 h post-admission in moderate/severe acute pancreatitis, with a specific focus on the timing of initiation and patient age as influential factors. RESULTS: The results showed that the mortality rates were similar between NG and NJ feeding groups (RR 0.86, 95% CI 0.42 to 1.77, P = 0.68). Significant differences were observed in the incidence of diarrhea (RR 2.75, 95% CI 1.21 to 6.25, P = 0.02) and pain (RR 2.91, 95% CI 1.50 to 5.64, P = 0.002) in the NG group. The NG group also showed a higher probability of infection (6.67% vs. 3.33%, P = 0.027) and a higher frequency of multiple organ failures. Subgroup analysis for early intervention (within 48 h) showed a higher risk of diarrhea in the NG group (RR 2.80, P = 0.02). No significant differences were found in the need for surgical intervention, parenteral nutrition, or success rates of feeding procedures. CONCLUSION: This meta-analysis highlights the importance of considering the method and timing of nutritional support in acute pancreatitis. While NG feeding within 48 h of admission increases the risk of certain complications such as diarrhea and infection, it does not significantly impact mortality or the need for surgical intervention.