Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.829
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(11): 2804-2806, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34048703

RESUMEN

The functional regulatory elements of agronomically important plant genomes have been long sought after. Marand et. al. generate a comprehensive atlas of cis-regulatory elements at single cell resolution in maize, providing a powerful resource for inquiries into the rules of multicellular development and for precision crop engineering.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Zea mays , Genoma de Planta , Secuencias Reguladoras de Ácidos Nucleicos/genética , Zea mays/genética
2.
Cell ; 184(11): 3041-3055.e21, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33964211

RESUMEN

cis-regulatory elements (CREs) encode the genomic blueprints of spatiotemporal gene expression programs enabling highly specialized cell functions. Using single-cell genomics in six maize organs, we determined the cis- and trans-regulatory factors defining diverse cell identities and coordinating chromatin organization by profiling transcription factor (TF) combinatorics, identifying TFs with non-cell-autonomous activity, and uncovering TFs underlying higher-order chromatin interactions. Cell-type-specific CREs were enriched for enhancer activity and within unmethylated long terminal repeat retrotransposons. Moreover, we found cell-type-specific CREs are hotspots for phenotype-associated genetic variants and were targeted by selection during modern maize breeding, highlighting the biological implications of this CRE atlas. Through comparison of maize and Arabidopsis thaliana developmental trajectories, we identified TFs and CREs with conserved and divergent chromatin dynamics, showcasing extensive evolution of gene regulatory networks. In addition to this rich dataset, we developed single-cell analysis software, Socrates, which can be used to understand cis-regulatory variation in any species.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Elementos Reguladores de la Transcripción/genética , Zea mays/genética , Arabidopsis/genética , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/fisiología , Redes Reguladoras de Genes/genética , Genoma , Genómica , Elementos Reguladores de la Transcripción/fisiología , Análisis de la Célula Individual , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
3.
Cell ; 184(21): 5391-5404.e17, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34597584

RESUMEN

Plant immunity is activated upon pathogen perception and often affects growth and yield when it is constitutively active. How plants fine-tune immune homeostasis in their natural habitats remains elusive. Here, we discover a conserved immune suppression network in cereals that orchestrates immune homeostasis, centering on a Ca2+-sensor, RESISTANCE OF RICE TO DISEASES1 (ROD1). ROD1 promotes reactive oxygen species (ROS) scavenging by stimulating catalase activity, and its protein stability is regulated by ubiquitination. ROD1 disruption confers resistance to multiple pathogens, whereas a natural ROD1 allele prevalent in indica rice with agroecology-specific distribution enhances resistance without yield penalty. The fungal effector AvrPiz-t structurally mimics ROD1 and activates the same ROS-scavenging cascade to suppress host immunity and promote virulence. We thus reveal a molecular framework adopted by both host and pathogen that integrates Ca2+ sensing and ROS homeostasis to suppress plant immunity, suggesting a principle for breeding disease-resistant, high-yield crops.


Asunto(s)
Calcio/metabolismo , Depuradores de Radicales Libres/metabolismo , Proteínas Fúngicas/metabolismo , Oryza/inmunología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sistemas CRISPR-Cas/genética , Membrana Celular/metabolismo , Resistencia a la Enfermedad/genética , Modelos Biológicos , Oryza/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Unión Proteica , Estabilidad Proteica , Reproducción , Especificidad de la Especie , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Zea mays/inmunología
4.
Cell ; 173(4): 813-815, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727667

RESUMEN

The discovery of neocentromere activity by maize knobs heralded the field of meiotic drive, in which selfish genetic elements exploit meiotic asymmetry to enhance their propagation. A new study reveals the long-awaited basis of this meiotic drive: cytoskeletal motors enable neocentromeric knobs to achieve favorable meiotic positioning and preferential inheritance.


Asunto(s)
Cinesinas , Zea mays/genética , Centrómero , Meiosis
5.
Cell ; 173(4): 839-850.e18, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29628142

RESUMEN

Maize abnormal chromosome 10 (Ab10) encodes a classic example of true meiotic drive that converts heterochromatic regions called knobs into motile neocentromeres that are preferentially transmitted to egg cells. Here, we identify a cluster of eight genes on Ab10, called the Kinesin driver (Kindr) complex, that are required for both neocentromere motility and preferential transmission. Two meiotic drive mutants that lack neocentromere activity proved to be kindr epimutants with increased DNA methylation across the entire gene cluster. RNAi of Kindr induced a third epimutant and corresponding loss of meiotic drive. Kinesin gliding assays and immunolocalization revealed that KINDR is a functional minus-end-directed kinesin that localizes specifically to knobs containing 180 bp repeats. Sequence comparisons suggest that Kindr diverged from a Kinesin-14A ancestor ∼12 mya and has driven the accumulation of > 500 Mb of knob repeats and affected the segregation of thousands of genes linked to knobs on all 10 chromosomes.


Asunto(s)
Centrómero/metabolismo , Cinesinas/metabolismo , Meiosis , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Centrómero/genética , Cromosomas de las Plantas , Evolución Molecular , Haplotipos , Hibridación Fluorescente in Situ , Cinesinas/antagonistas & inhibidores , Cinesinas/clasificación , Cinesinas/genética , Modelos Genéticos , Mutagénesis , Filogenia , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Secuenciación Completa del Genoma , Zea mays/genética
6.
Cell ; 170(6): 1049-1054, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28886375

RESUMEN

September 2, 2017, marks the 25th year after the passing of Dr. Barbara McClintock, geneticist and recipient of the 1983 Nobel Prize in Physiology or Medicine for her discovery of transposable elements in maize. This memoir focuses on the last years of her life-after the prize-and includes personal recollections of how she mentored young scientists and inspired the age of genetics, epigenetics, and genomics.


Asunto(s)
Elementos Transponibles de ADN , Genética/educación , Genes de Plantas , Genética/historia , Historia del Siglo XX , Premio Nobel , Fisiología/historia , Zea mays/genética
7.
Cell ; 163(1): 9-11, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406361

RESUMEN

This year marks the 150(th) anniversary of the presentation by Gregor Mendel of his studies of plant hybridization to the Brunn Natural History Society. Their nature and meaning have been discussed many times. However, on this occasion, we reflect on the scientific enterprise and the perception of new discoveries.


Asunto(s)
Genética/historia , Modelos Genéticos , Animales , Pollos/genética , Cruzamientos Genéticos , Historia del Siglo XVIII , Pisum sativum/genética , Zea mays/genética
8.
Nature ; 633(8029): 380-388, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39112710

RESUMEN

Selfish genetic elements contribute to hybrid incompatibility and bias or 'drive' their own transmission1,2. Chromosomal drive typically functions in asymmetric female meiosis, whereas gene drive is normally post-meiotic and typically found in males. Here, using single-molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp. mays) and teosinte mexicana (Z. mays ssp. mexicana) that depends on RNA interference (RNAi). 22-nucleotide small RNAs from a non-coding RNA hairpin in mexicana depend on Dicer-like 2 (Dcl2) and target Teosinte Drive Responder 1 (Tdr1), which encodes a lipase required for pollen viability. Dcl2, Tdr1 and the hairpin are in tight pseudolinkage on chromosome 5, but only when transmitted through the male. Introgression of mexicana into early cultivated maize is thought to have been critical to its geographical dispersal throughout the Americas3, and a tightly linked inversion in mexicana spans a major domestication sweep in modern maize4. A survey of maize traditional varieties and sympatric populations of teosinte mexicana reveals correlated patterns of admixture among unlinked genes required for RNAi on at least four chromosomes that are also subject to gene drive in pollen from synthetic hybrids. Teosinte Pollen Drive probably had a major role in maize domestication and diversification, and offers an explanation for the widespread abundance of 'self' small RNAs in the germ lines of plants and animals.


Asunto(s)
Domesticación , Polen , Interferencia de ARN , Zea mays , Zea mays/genética , Polen/genética , Hibridación Genética , Introgresión Genética , Genoma de Planta
9.
Nature ; 632(8025): 576-584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866052

RESUMEN

Increasing planting density is a key strategy for enhancing maize yields1-3. An ideotype for dense planting requires a 'smart canopy' with leaf angles at different canopy layers differentially optimized to maximize light interception and photosynthesis4-6, among other features. Here we identified leaf angle architecture of smart canopy 1 (lac1), a natural mutant with upright upper leaves, less erect middle leaves and relatively flat lower leaves. lac1 has improved photosynthetic capacity and attenuated responses to shade under dense planting. lac1 encodes a brassinosteroid C-22 hydroxylase that predominantly regulates upper leaf angle. Phytochrome A photoreceptors accumulate in shade and interact with the transcription factor RAVL1 to promote its degradation via the 26S proteasome, thereby inhibiting activation of lac1 by RAVL1 and decreasing brassinosteroid levels. This ultimately decreases upper leaf angle in dense fields. Large-scale field trials demonstrate that lac1 boosts maize yields under high planting densities. To quickly introduce lac1 into breeding germplasm, we transformed a haploid inducer and recovered homozygous lac1 edits from 20 diverse inbred lines. The tested doubled haploids uniformly acquired smart-canopy-like plant architecture. We provide an important target and an accelerated strategy for developing high-density-tolerant cultivars, with lac1 serving as a genetic chassis for further engineering of a smart canopy in maize.


Asunto(s)
Producción de Cultivos , Fotosíntesis , Hojas de la Planta , Zea mays , Brasinoesteroides/metabolismo , Producción de Cultivos/métodos , Oscuridad , Haploidia , Homocigoto , Luz , Mutación , Fotosíntesis/efectos de la radiación , Fitocromo A/metabolismo , Fitomejoramiento , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Zea mays/anatomía & histología , Zea mays/enzimología , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/efectos de la radiación
10.
Nature ; 626(8000): 792-798, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297125

RESUMEN

Crop production is a large source of atmospheric ammonia (NH3), which poses risks to air quality, human health and ecosystems1-5. However, estimating global NH3 emissions from croplands is subject to uncertainties because of data limitations, thereby limiting the accurate identification of mitigation options and efficacy4,5. Here we develop a machine learning model for generating crop-specific and spatially explicit NH3 emission factors globally (5-arcmin resolution) based on a compiled dataset of field observations. We show that global NH3 emissions from rice, wheat and maize fields in 2018 were 4.3 ± 1.0 Tg N yr-1, lower than previous estimates that did not fully consider fertilizer management practices6-9. Furthermore, spatially optimizing fertilizer management, as guided by the machine learning model, has the potential to reduce the NH3 emissions by about 38% (1.6 ± 0.4 Tg N yr-1) without altering total fertilizer nitrogen inputs. Specifically, we estimate potential NH3 emissions reductions of 47% (44-56%) for rice, 27% (24-28%) for maize and 26% (20-28%) for wheat cultivation, respectively. Under future climate change scenarios, we estimate that NH3 emissions could increase by 4.0 ± 2.7% under SSP1-2.6 and 5.5 ± 5.7% under SSP5-8.5 by 2030-2060. However, targeted fertilizer management has the potential to mitigate these increases.


Asunto(s)
Amoníaco , Producción de Cultivos , Fertilizantes , Amoníaco/análisis , Amoníaco/metabolismo , Producción de Cultivos/métodos , Producción de Cultivos/estadística & datos numéricos , Producción de Cultivos/tendencias , Conjuntos de Datos como Asunto , Ecosistema , Fertilizantes/efectos adversos , Fertilizantes/análisis , Fertilizantes/estadística & datos numéricos , Aprendizaje Automático , Nitrógeno/análisis , Nitrógeno/metabolismo , Oryza/metabolismo , Suelo/química , Triticum/metabolismo , Zea mays/metabolismo , Cambio Climático/estadística & datos numéricos
11.
Nat Rev Genet ; 24(11): 797-800, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37723348

RESUMEN

In 1983, Barbara McClintock was awarded the Nobel Prize in Physiology or Medicine for her discovery of transposable elements. This discovery was rooted in meticulous work on maize mutants that she had carried out 40 years earlier. Over this time frame, our perception of transposable elements has undergone important paradigm shifts, with profound implications for our understanding of genome function and evolution. In commemoration of this milestone, I revisit the legacy of this iconic scientist through the kaleidoscopic history of genetics and reflect on her achievements and the hurdles she faced in her career.


Asunto(s)
Elementos Transponibles de ADN , Premio Nobel , Elementos Transponibles de ADN/genética , Zea mays/genética
12.
Nature ; 617(7962): 785-791, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37165193

RESUMEN

Different plant species within the grasses were parallel targets of domestication, giving rise to crops with distinct evolutionary histories and traits1. Key traits that distinguish these species are mediated by specialized cell types2. Here we compare the transcriptomes of root cells in three grass species-Zea mays, Sorghum bicolor and Setaria viridis. We show that single-cell and single-nucleus RNA sequencing provide complementary readouts of cell identity in dicots and monocots, warranting a combined analysis. Cell types were mapped across species to identify robust, orthologous marker genes. The comparative cellular analysis shows that the transcriptomes of some cell types diverged more rapidly than those of others-driven, in part, by recruitment of gene modules from other cell types. The data also show that a recent whole-genome duplication provides a rich source of new, highly localized gene expression domains that favour fast-evolving cell types. Together, the cell-by-cell comparative analysis shows how fine-scale cellular profiling can extract conserved modules from a pan transcriptome and provide insight on the evolution of cells that mediate key functions in crops.


Asunto(s)
Productos Agrícolas , Setaria (Planta) , Sorghum , Transcriptoma , Zea mays , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas/genética , Sorghum/citología , Sorghum/genética , Transcriptoma/genética , Zea mays/citología , Zea mays/genética , Setaria (Planta)/citología , Setaria (Planta)/genética , Raíces de Plantas/citología , Análisis de Expresión Génica de una Sola Célula , Análisis de Secuencia de ARN , Productos Agrícolas/citología , Productos Agrícolas/genética , Evolución Molecular
13.
Nature ; 624(7990): 122-129, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37993721

RESUMEN

Before the colonial period, California harboured more language variation than all of Europe, and linguistic and archaeological analyses have led to many hypotheses to explain this diversity1. We report genome-wide data from 79 ancient individuals from California and 40 ancient individuals from Northern Mexico dating to 7,400-200 years before present (BP). Our analyses document long-term genetic continuity between people living on the Northern Channel Islands of California and the adjacent Santa Barbara mainland coast from 7,400 years BP to modern Chumash groups represented by individuals who lived around 200 years BP. The distinctive genetic lineages that characterize present-day and ancient people from Northwest Mexico increased in frequency in Southern and Central California by 5,200 years BP, providing evidence for northward migrations that are candidates for spreading Uto-Aztecan languages before the dispersal of maize agriculture from Mexico2-4. Individuals from Baja California share more alleles with the earliest individual from Central California in the dataset than with later individuals from Central California, potentially reflecting an earlier linguistic substrate, whose impact on local ancestry was diluted by later migrations from inland regions1,5. After 1,600 years BP, ancient individuals from the Channel Islands lived in communities with effective sizes similar to those in pre-agricultural Caribbean and Patagonia, and smaller than those on the California mainland and in sampled regions of Mexico.


Asunto(s)
Variación Genética , Pueblos Indígenas , Humanos , Agricultura/historia , California/etnología , Región del Caribe/etnología , Etnicidad/genética , Etnicidad/historia , Europa (Continente)/etnología , Variación Genética/genética , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia Antigua , Historia Medieval , Migración Humana/historia , Pueblos Indígenas/genética , Pueblos Indígenas/historia , Islas , Lenguaje/historia , México/etnología , Zea mays , Genoma Humano/genética , Genómica , Alelos
14.
Nature ; 612(7939): 292-300, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36385527

RESUMEN

Teosinte, the wild ancestor of maize (Zea mays subsp. mays), has three times the seed protein content of most modern inbreds and hybrids, but the mechanisms that are responsible for this trait are unknown1,2. Here we use trio binning to create a contiguous haplotype DNA sequence of a teosinte (Zea mays subsp. parviglumis) and, through map-based cloning, identify a major high-protein quantitative trait locus, TEOSINTE HIGH PROTEIN 9 (THP9), on chromosome 9. THP9 encodes an asparagine synthetase 4 enzyme that is highly expressed in teosinte, but not in the B73 inbred, in which a deletion in the tenth intron of THP9-B73 causes incorrect splicing of THP9-B73 transcripts. Transgenic expression of THP9-teosinte in B73 significantly increased the seed protein content. Introgression of THP9-teosinte into modern maize inbreds and hybrids greatly enhanced the accumulation of free amino acids, especially asparagine, throughout the plant, and increased seed protein content without affecting yield. THP9-teosinte seems to increase nitrogen-use efficiency, which is important for promoting a high yield under low-nitrogen conditions.


Asunto(s)
Nitrógeno , Zea mays , Zea mays/genética , Familia , Semillas/genética
15.
Genes Dev ; 34(17-18): 1239-1251, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32820038

RESUMEN

A maize chromosome variant called abnormal chromosome 10 (Ab10) converts knobs on chromosome arms into neocentromeres, causing their preferential segregation to egg cells in a process known as meiotic drive. We previously demonstrated that the gene Kinesin driver (Kindr) on Ab10 encodes a kinesin-14 required to mobilize neocentromeres made up of the major tandem repeat knob180. Here we describe a second kinesin-14 gene, TR-1 kinesin (Trkin), that is required to mobilize neocentromeres made up of the minor tandem repeat TR-1. Trkin lies in a 4-Mb region of Ab10 that is not syntenic with any other region of the maize genome and shows extraordinary sequence divergence from Kindr and other kinesins in plants. Despite its unusual structure, Trkin encodes a functional minus end-directed kinesin that specifically colocalizes with TR-1 in meiosis, forming long drawn out neocentromeres. TRKIN contains a nuclear localization signal and localizes to knobs earlier in prophase than KINDR. The fact that TR-1 repeats often co-occur with knob180 repeats suggests that the current role of the TRKIN/TR-1 system is to facilitate the meiotic drive of the KINDR/knob180 system.


Asunto(s)
Centrómero/genética , Centrómero/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Meiosis , Modelos Genéticos , Transporte de Proteínas/genética
16.
Genes Dev ; 34(17-18): 1110-1112, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873577

RESUMEN

Maize heterochromatic knobs cheat female meiosis by forming neocentromeres that bias their segregation into the future egg cell. In this issue of Genes & Development, Swentowsky and colleagues (pp. 1239-1251) show that two types of knobs, those composed of 180-bp and TR1 sequences, recruit their own novel and divergent kinesin-14 family members to form neocentromeres.


Asunto(s)
Genoma de Planta , Zea mays/genética , Centrómero/genética , Genoma de Planta/genética , Cinesinas/genética , Cinesinas/metabolismo , Meiosis/genética
17.
Annu Rev Microbiol ; 76: 1-19, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395169

RESUMEN

My path in science began with a fascination for microbiology and phages and later involved a switch of subjects to the fungus Ustilago maydis and how it causes disease in maize. I will not provide a review of my work but rather focus on decisive findings, serendipitous, lucky moments when major advances made the U. maydis-maize system what it is now-a well-established model for biotrophic fungi. I also want to share with you the joy of finding the needle in a haystack at the very end of my scientific career, a fungal structure likely used for effector delivery, and how we were able to translate this into a potential application in agriculture.


Asunto(s)
Bacteriófagos , Neoplasias , Ustilago , Proteínas Fúngicas , Humanos , Enfermedades de las Plantas/microbiología , Virulencia , Zea mays/microbiología
18.
Plant Cell ; 36(9): 3709-3728, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38922302

RESUMEN

Variation in gene expression levels is pervasive among individuals and races or varieties, and has substantial agronomic consequences, for example, by contributing to hybrid vigor. Gene expression level variation results from mutations in regulatory sequences (cis) and/or transcription factor (TF) activity (trans), but the mechanisms underlying cis- and/or trans-regulatory variation of complex phenotypes remain largely unknown. Here, we investigated gene expression variation mechanisms underlying the differential accumulation of the insecticidal compounds maysin and chlorogenic acid in silks of widely used maize (Zea mays) inbreds, B73 and A632. By combining transcriptomics and cistromics, we identified 1,338 silk direct targets of the maize R2R3-MYB TF Pericarp color1 (P1), consistent with it being a regulator of maysin and chlorogenic acid biosynthesis. Among these P1 targets, 464 showed allele-specific expression (ASE) between B73 and A632 silks. Allelic DNA-affinity purification sequencing identified 34 examples in which P1 allelic specific binding (ASB) correlated with cis-expression variation. From previous yeast one-hybrid studies, we identified 9 TFs potentially implicated in the control of P1 targets, with ASB to 83 out of 464 ASE genes (cis) and differential expression of 4 out of 9 TFs between B73 and A632 silks (trans). These results provide a molecular framework for understanding universal mechanisms underlying natural variation of gene expression levels, and how the regulation of metabolic diversity is established.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Alelos , Ácido Clorogénico/metabolismo , Fenotipo , Variación Genética
19.
Plant Cell ; 36(5): 1600-1621, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252634

RESUMEN

The efficiency of solar radiation interception contributes to the photosynthetic efficiency of crop plants. Light interception is a function of canopy architecture, including plant density; leaf number, length, width, and angle; and azimuthal canopy orientation. We report on the ability of some maize (Zea mays) genotypes to alter the orientations of their leaves during development in coordination with adjacent plants. Although the upper canopies of these genotypes retain the typical alternate-distichous phyllotaxy of maize, their leaves grow parallel to those of adjacent plants. A genome-wide association study (GWAS) on this parallel canopy trait identified candidate genes, many of which are associated with shade avoidance syndrome, including phytochromeC2. GWAS conducted on the fraction of photosynthetically active radiation (PAR) intercepted by canopies also identified multiple candidate genes, including liguleless1 (lg1), previously defined by its role in ligule development. Under high plant densities, mutants of shade avoidance syndrome and liguleless genes (lg1, lg2, and Lg3) exhibit altered canopy patterns, viz, the numbers of interrow leaves are greatly reduced as compared to those of nonmutant controls, resulting in dramatically decreased PAR interception. In at least the case of lg2, this phenotype is not a consequence of abnormal ligule development. Instead, liguleless gene functions are required for normal light responses, including azimuth canopy re-orientation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Luz , Fotosíntesis , Hojas de la Planta , Zea mays , Zea mays/genética , Zea mays/efectos de la radiación , Zea mays/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Genotipo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenotipo
20.
Plant Cell ; 36(9): 3237-3259, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38801745

RESUMEN

The F-box protein Coronatine Insensitive (COI) is a receptor for the jasmonic acid signaling pathway in plants. To investigate the functions of the 6 maize (Zea mays) COI proteins (COI1a, COI1b, COI1c, COI1d, COI2a, and COI2b), we generated single, double, and quadruple loss-of-function mutants. The pollen of the coi2a coi2b double mutant was inviable. The coi1 quadruple mutant (coi1-4x) exhibited shorter internodes, decreased photosynthesis, leaf discoloration, microelement deficiencies, and accumulation of DWARF8 and/or DWARF9, 2 DELLA family proteins that repress the gibberellic acid (GA) signaling pathway. Coexpression of COI and DELLA in Nicotiana benthamiana showed that the COI proteins trigger proteasome-dependent DELLA degradation. Many genes that are downregulated in the coi1-4x mutant are GA-inducible. In addition, most of the proteins encoded by the downregulated genes are predicted to be bundle sheath- or mesophyll-enriched, including those encoding C4-specific photosynthetic enzymes. Heterologous expression of maize Coi genes in N. benthamiana showed that COI2a is nucleus-localized and interacts with maize jasmonate zinc-finger inflorescence meristem domain (JAZ) proteins, the canonical COI repressor partners. However, maize COI1a and COI1c showed only partial nuclear localization and reduced binding efficiency to the tested JAZ proteins. Together, these results show the divergent functions of the 6 COI proteins in regulating maize growth and defense pathways.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fotosíntesis/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Giberelinas/metabolismo , Mutación , Transducción de Señal , Oxilipinas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Plantas Modificadas Genéticamente , Ciclopentanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA