Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 612, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937704

RESUMEN

With global warming, high temperature (HT) has become one of the most common abiotic stresses resulting in significant crop yield losses, especially for jujube (Ziziphus jujuba Mill.), an important temperate economic crop cultivated worldwide. This study aims to explore the coping mechanism of jujube to HT stress at the transcriptional and post-transcriptional levels, including identifying differentially expressed miRNAs and mRNAs as well as elucidating the critical pathways involved. High-throughput sequencing analyses of miRNA and mRNA were performed on jujube leaves, which were collected from "Fucumi" (heat-tolerant) and "Junzao" (heat-sensitive) cultivars subjected to HT stress (42 °C) for 0, 1, 3, 5, and 7 days, respectively. The results showed that 45 known miRNAs, 482 novel miRNAs, and 13,884 differentially expressed mRNAs (DEMs) were identified. Among them, integrated analysis of miRNA target genes prediction and mRNA-seq obtained 1306 differentially expressed miRNAs-mRNAs pairs, including 484, 769, and 865 DEMIs-DEMs pairs discovered in "Fucuimi", "Junzao" and two genotypes comparative groups, respectively. Furthermore, functional enrichment analysis of 1306 DEMs revealed that plant-pathogen interaction, starch and sucrose metabolism, spliceosome, and plant hormone signal transduction were crucial pathways in jujube leaves response to HT stress. The constructed miRNA-mRNA network, composed of 20 DEMIs and 33 DEMs, displayed significant differently expressions between these two genotypes. This study further proved the regulatory role of miRNAs in the response to HT stress in plants and will provide a theoretical foundation for the innovation and cultivation of heat-tolerant varieties.


Asunto(s)
Genotipo , MicroARNs , ARN Mensajero , ARN de Planta , Ziziphus , Ziziphus/genética , Ziziphus/fisiología , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , Regulación de la Expresión Génica de las Plantas , Calor , Hojas de la Planta/genética , Estrés Fisiológico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Respuesta al Choque Térmico/genética
2.
Plant Physiol ; 191(1): 414-427, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36271866

RESUMEN

Jujube (Ziziphus jujuba Mill.), the most economically important fruit tree in Rhamnaceae, was domesticated from sour jujube (Z. jujuba Mill. var. spinosa (Bunge) Hu ex H.F.Chow.). During domestication, fruit sweetness increased and acidity decreased. Reduction in organic acid content is crucial for the increase in sweetness of jujube fruit. In this study, the determination of malate content among 46 sour jujube and 35 cultivated jujube accessions revealed that malate content varied widely in sour jujube (0.90-13.31 mg g-1) but to a lesser extent in cultivated jujube (0.33-2.81 mg g-1). Transcriptome sequencing analysis showed that the expression level of Aluminum-Dependent Malate Transporter 4 (ZjALMT4) was substantially higher in sour jujube than in jujube. Correlation analysis of mRNA abundance and fruit malate content and transient gene overexpression showed that ZjALMT4 participates in malate accumulation. Further sequencing analyses revealed that three genotypes of the W-box in the promoter of ZjALMT4 in sour jujube associated with malate content were detected, and the genotype associated with low malate content was fixed in jujube. Yeast one-hybrid screening showed that ZjWRKY7 binds to the W-box region of the high-acidity genotype in sour jujube, whereas the binding ability was weakened in jujube. Transient dual-luciferase and overexpression analyses showed that ZjWRKY7 directly binds to the promoter of ZjALMT4, activating its transcription, and thereby promoting malate accumulation. These findings provide insights into the mechanism by which ZjALMT4 modulates malate accumulation in sour jujube and jujube. The results are of theoretical and practical importance for the exploitation and domestication of germplasm resources.


Asunto(s)
Frutas , Ziziphus , Frutas/genética , Frutas/química , Ziziphus/genética , Aluminio , Malatos , Genotipo
3.
J Exp Bot ; 75(10): 3054-3069, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38320293

RESUMEN

Phytoplasmas manipulate host plant development to benefit insect vector colonization and their own invasion. However, the virulence factors and mechanisms underlying small-leaf formation caused by jujube witches' broom (JWB) phytoplasmas remain largely unknown. Here, effectors SJP1 and SJP2 from JWB phytoplasmas were identified to induce small-leaf formation in jujube (Ziziphus jujuba). In vivo interaction and expression assays showed that SJP1 and SJP2 interacted with and stabilized the transcription factor ZjTCP2. Overexpression of SJP1 and SJP2 in jujube induced ZjTCP2 accumulation. In addition, the abundance of miRNA319f_1 was significantly reduced in leaves of SJP1 and SJP2 transgenic jujube plants and showed the opposite pattern to the expression of its target, ZjTCP2, which was consistent with the pattern in diseased leaves. Overexpression of ZjTCP2 in Arabidopsis promoted ectopic leaves arising from the adaxial side of cotyledons and reduced leaf size. Constitutive expression of the miRNA319f_1 precursor in the 35S::ZjTCP2 background reduced the abundance of ZjTCP2 mRNA and reversed the cotyledon and leaf defects in Arabidopsis. Therefore, these observations suggest that effectors SJP1 and SJP2 induced small-leaf formation, at least partly, by interacting with and activating ZjTCP2 expression both at the transcriptional and the protein level, providing new insights into small-leaf formation caused by phytoplasmas in woody plants.


Asunto(s)
Phytoplasma , Hojas de la Planta , Proteínas de Plantas , Factores de Transcripción , Ziziphus , Ziziphus/microbiología , Ziziphus/genética , Hojas de la Planta/microbiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Phytoplasma/fisiología , Enfermedades de las Plantas/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , MicroARNs/genética , MicroARNs/metabolismo
4.
Physiol Plant ; 176(4): e14426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39049207

RESUMEN

The Ziziphus genus, belonging to the Rhamnaceae family, holds significant economic, nutritional, and medicinal value. However, much remains to be discovered about its diversity and physical characteristics. Factors such as growth, resilience to changes, disease resistance, and unique features contribute to the quality of Ziziphus species. This study aims to investigate the genomes of 200 genotypes from five Ziziphus species: Ziziphus jujuba (Zj), Ziziphus nummularia (Zm), Ziziphus oxyphylla (Zx), Ziziphus mauritiana (Zm), and the cultivated variety Ziziphus jujube var. jujube, collected from Pakistan and China. Our goal is to identify single nucleotide polymorphisms (SNPs) associated with eight different traits and understand the genetic diversity within the selected Ziziphus species and their genotypes. Using high-quality SNPs obtained through genotype-by-sequencing (GBS), we conducted population structure, phylogenetic, and principal coordinates analyses, identifying a total of 10,945 clean SNPs. These genotypes were categorized into two groups, A and B. Natural Ziziphus variants in Pakistan, specifically Z. jujuba and Z. nummularia, exhibited high levels of genetic diversity and polymorphic information content (PIC) of 0.46 and 0.41, respectively, compared to other species. Furthermore, we identified 15 influential candidate genes that play crucial roles in regulating agronomic traits, such as fruit width and diameter, leaf width, plant height, and stem diameter within this group. This study provides valuable insights that can be utilized in Ziziphus breeding efforts.


Asunto(s)
Genotipo , Polimorfismo de Nucleótido Simple , Ziziphus , Ziziphus/genética , Ziziphus/fisiología , Polimorfismo de Nucleótido Simple/genética , Filogenia , Pakistán , Fenotipo , Genoma de Planta/genética , China
5.
Plant J ; 109(5): 1116-1133, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862996

RESUMEN

Plants supply both food and medicinal compounds, which are ascribed to diverse metabolites produced by plants. However, studies on domestication-driven changes in the metabolome and genetic basis of bioactive molecules in perennial fruit trees are generally lacking. Here, we conducted multidimensional analyses revealing a singular domestication event involving the genomic and metabolomic selection of jujube trees (Ziziphus jujuba Mill.). The genomic selection for domesticated genes was highly enriched in metabolic pathways, including carbohydrates and specialized metabolism. Domesticated metabolome profiling indicated that 187 metabolites exhibited significant divergence as a result of directional selection. Malic acid was directly selected during domestication, and the simultaneous selection of specialized metabolites, including triterpenes, consequently lead to edible properties. Cyclopeptide alkaloids (CPAs) were specifically targeted for the divergence between dry and fresh cultivars. We identified 1080 significantly associated loci for 986 metabolites. Among them, 15 triterpenes were directly selected at six major loci, allowing the identification of a homologous cluster containing seven 2,3-oxidosqualene cyclases (OSCs). An OSC gene was found to contribute to the reduction in the content of triterpenes during domestication. The complete pathway for synthesizing ursolic acid was dissected by integration of the metabolome and transcriptome. Additionally, an N-methyltransferase involved in the biosynthesis of CPA and responsible for inter-cultivar content variation was identified. The present study promotes our understanding of the selection process of the global metabolome subsequent to fruit tree domestication and facilitates the genetic manipulation of specialized metabolites to enhance their edible traits.


Asunto(s)
Triterpenos , Ziziphus , Domesticación , Frutas/metabolismo , Metaboloma , Árboles , Triterpenos/metabolismo , Ziziphus/química , Ziziphus/genética , Ziziphus/metabolismo
6.
BMC Genomics ; 24(1): 500, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644409

RESUMEN

BACKGROUND: Plant organs grow in a certain direction and organ twisted growth, a rare and distinctive trait, is associated with internal structure changes and special genes. The twisted branch mutant of Chinese jujube jujube, an important fruit tree native to China and introduced to nearly 50 countries, provides new typical materials for exploration of plant twisted growth. RESULTS: In this study, the cytological characteristics and related genes of twisted branches in Chinese jujube were revealed by microscopy observation and transcriptome analysis. The unique coexistence of primary and secondary structures appeared in the twisted parts of branches, and special structures such as collateral bundle, cortical bundles, and internal phloem were formed. Ninety differentially expressed genes of 'Dongzao' and its twisted mutant were observed, in which ZjTBL43, ZjFLA11, ZjFLA12 and ZjIQD1 were selected as candidate genes. ZjTBL43 was homologous to AtTBL43 in Arabidopsis, which was involved in the synthesis and deposition of cellular secondary wall cellulose. The attbl43 mutant showed significant inflorescence stem bending growth. The transgenic lines of attbl43 with overexpression of ZjTBL43 were phenotypically normal.The branch twisted growth may be caused by mutations in ZjTBL43 in Chinese jujube. AtIQD10, AtFLA11 and AtFLA12 were homologous to ZjIQD1, ZjFLA11 and ZjFLA12, respectively. However, the phenotype of their function defect mutants was normal. CONCLUSION: In summary, these findings will provide new insights into the plant organ twisted growth and a reference for investigation of controlling mechanisms of plant growth direction.


Asunto(s)
Ziziphus , Arabidopsis , Perfilación de la Expresión Génica , Mutación , Ziziphus/genética
7.
BMC Genomics ; 24(1): 80, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36803656

RESUMEN

BACKGROUND: Ribonuclease (RNase T2) plays crucial roles in plant evolution and breeding. However, there have been few studies on the RNase T2 gene family in Ziziphus jujuba Mill., one of important dried fruit tree species. Recently, the released sequences of the reference genome of jujube provide a good chance to perform genome-wide identification and characterization of ZjRNase gene family in the jujube. RESULTS: In this study, we identified four members of RNase T2 in jujube distributed on three chromosomes and unassembled chromosomes. They all contained two conserved sites (CASI and CASII). Analysis of the phylogenetic relationships revealed that the RNase T2 genes in jujube could be divided into two groups: ZjRNase1 and ZjRNase2 belonged to class I, while ZjRNase3 and ZjRNase4 belonged to class II. Only ZjRNase1 and ZjRNase2 expression were shown by the jujube fruit transcriptome analysis. So ZjRNase1 and ZjRNase2 were selected functional verification by overexpression transformation of Arabidopsis. The overexpression of these two genes led to an approximately 50% reduction in seed number, which deserve further attention. Moreover, the leaves of the ZjRNase1 overexpression transgenic lines were curled and twisted. Overexpression of ZjRNase2 resulted in shortened and crisp siliques and the production of trichomes, and no seeds were produced. CONCLUSION: In summary, these findings will provide new insights into the molecular mechanisms of low number of hybrid seeds in jujube and a reference for the future molecular breeding of jujube.


Asunto(s)
Ziziphus , Ziziphus/genética , Frutas/genética , Filogenia , Fitomejoramiento
8.
BMC Plant Biol ; 23(1): 550, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37936089

RESUMEN

BACKGROUND: Several species of the genus Ziziphus are used worldwide for their medicinal and therapeutic properties. The present study aimed to investigate the phenotypic variation of five species of the Ziziphus genus, including Z. jujuba Mill. (25 accessions), Z. mauritiana Lam. (25 accessions), Z. spina-christi L. (25 accessions), Z. nummularia L. (10 accessions), and Z. xylopyrus Willd. (10 accessions) from Markazi, Sistan-va-Baluchestan, and Khuzestan provinces, Iran. RESULTS: The investigated accessions have significant differences in terms of all the measured as revealed using analysis of variance (ANOVA, P < 0.01). The range of fruit weight was 0.43-1.29 g in Z. jujuba, 17.85-29.87 g in Z. mauritiana, 0.94-3.44 g in Z. spina-christi, 0.93-2.02 g in Z. nummularia, and 0.91-3.02 g in Z. xylopyrus. All the measured traits showed significant and positive correlations with each other. Multiple regression analysis (MRA) results showed that fruit length, stone width, stone weight, stone length, and fruit width have significant effects on fruit weight, and thus their fluctuations have a significant effect on increasing or decreasing fruit weight. The accessions were grouped into two main clusters using hierarchical cluster analysis. The first cluster (I) included all the accessions of Z. mauritiana, while the second cluster (II) contained the accessions of the rest species forming two sub-clusters. CONCLUSION: Based on the commercial characters, accessions no. 12, 13, 17, 23, and 24 in Z. jujuba, accessions no. 3, 9, 17, 18, 20, 22, and 23 in Z. mauritiana, accessions no. 5, 6, 8, 13, 19, 22, and 24 in Z. spina-christi, accessions no. 3, 7, and 9 in Z. nummularia, and accessions no. 2, 4, 7, and 10 in Z. oxyphylla showed the highest fruit weight and thus can be suggested as superior for cultivation or use in breeding programs due to having larger fruits.


Asunto(s)
Ziziphus , Ziziphus/genética , Irán , Fitomejoramiento , Frutas
9.
BMC Plant Biol ; 23(1): 251, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173622

RESUMEN

Phytoplasmas are obligate cell wall-less prokaryotic bacteria that primarily multiply in plant phloem tissue. Jujube witches' broom (JWB) associated with phytoplasma is a destructive disease of jujube (Ziziphus jujuba Mill.). Here we report the complete 'Candidatus Phytoplasma ziziphi' chromosome of strain Hebei-2018, which is a circular genome of 764,108-base pairs with 735 predicted CDS. Notably, extra 19,825 bp (from 621,995 to 641,819 bp) compared to the previously reported one complements the genes involved in glycolysis, such as pdhA, pdhB, pdhC, pdhD, ackA, pduL and LDH. The synonymous codon usage bias (CUB) patterns by using comparative genomics analysis among the 9 phytoplasmas were similar for most codons. The ENc-GC3s analysis among the 9 phytoplasmas showed a greater effect under the selection on the CUBs of phytoplasmas genes than mutation and other factors. The genome exhibited a strongly reduced ability in metabolic synthesis, while the genes encoding transporter systems were well developed. The genes involved in sec-dependent protein translocation system were also identified.The expressions of nine FtsHs encoding membrane associated ATP-dependent Zn proteases and Mn-SodA with redox capacity in the Ca. P. ziziphi was positively correlated with the phytoplasma concentration. Taken together, the genome will not only expand the number of phytoplasma species and provide some new information about Ca. P. ziziphi, but also contribute to exploring its pathogenic mechanism.


Asunto(s)
Phytoplasma , Ziziphus , Phytoplasma/genética , Plantas/genética , Codón , Ziziphus/genética , Ziziphus/metabolismo , Mutación , Enfermedades de las Plantas/microbiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-37079351

RESUMEN

A Gram-stain negative, aerobic, rod-shaped and creamy pink-coloured bacterium, designated MAHUQ-68T, was isolated from rhizospheric soil of a jujube tree. Colonies grew at 10-40 °C (optimum, 28 °C), pH 6.0-9.0 (optimum pH, 7.0) and in the presence of 0-1.5 % NaCl (optimum 0-0.5 %). Positive for both catalase and oxidase activity. Strain MAHUQ-68T hydrolysed casein, starch, aesculin and l-tyrosine. Based on the results of phylogenetic analysis using 16S rRNA gene and genome sequences, strain MAHUQ-68T clustered together within the genus Solitalea. The closest members were Solitalea longa HR-AVT (98.8 % sequence similarity), Solitalea canadensis DSM 3403T (96.9 %) and Solitalea koreensis R2A36-4T (94.0 %). The genome of strain MAHUQ-68 T was 4 250 173 bp long with 68 scaffolds and 3 570 protein-coding genes. The genomic DNA G+C content of the type strain was 38.0 mol%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain MAHUQ-68T and its closest relatives were 72.0-81.4% and 19.8-24.3 %, respectively. The major cellular fatty acids were iso-C15 : 0 and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). The main respiratory quinone was menaquinone-7. The polar lipids comprised phosphatidylethanolamine, an unidentified aminolipid and four unidentified lipids. Based on these data, strain MAHUQ-68T represents a novel species in the genus Solitalea, for which the name Solitalea agri sp. nov. is proposed. The type strain is MAHUQ-68T (=KACC 22249T=CGMCC 1.19062T).


Asunto(s)
Ácidos Grasos , Ziziphus , Ácidos Grasos/química , Ziziphus/genética , Suelo , Filogenia , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Composición de Base , Análisis de Secuencia de ADN , Microbiología del Suelo
11.
Int Microbiol ; 26(4): 1103-1112, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37118189

RESUMEN

BACKGROUND: Jujube is an economically important fruit tree and native to China. Viral disease is a new threat to jujube production, and several new viruses have been identified infecting jujube plants. During our field survey, jujube mosaic disease was widely distributed in Beijing, but the associated causal agents are still unknown. METHODS: Small RNA deep sequencing was conducted to identify the candidate viruses associated with jujube mosaic. Further complete genome sequences of the viruses were cloned, and the genomic characterization of each virus was analyzed. The field distribution of these viruses was further explored with PCR/RT-PCR detection of field samples. RESULTS: Mixed infection of four viruses was identified in a plant sample with the symptom of mosaic and leaf twisting, including the previously reported jujube yellow mottle-associated virus (JYMaV), persimmon ampelovirus (PAmpV), a new badnavirus tentatively named jujube-associated badnavirus (JaBV), and a new secovirus tentatively named jujube-associated secovirus (JaSV). PAmpV-jujube was 14,093 nt in length with seven putative open reading frames (ORFs) and shared highest (79.4%) nucleotide (nt) sequence identity with PAmpV PBs3. Recombination analysis showed that PAmpV-jujube was a recombinant originating from plum bark necrosis stem pitting-associated virus isolates nanjing (KC590347) and bark (EF546442). JaBV was 6449 bp in length with conserved genomic organization typical of badnaviruses. The conserved RT and RNAse H region shared highest 67.6% nt sequence identity with jujube mosaic-associated virus, which was below the 80% nt sequence identity value used as the species demarcation threshold in Badnavirus. The genome of JaSV composed of two RNA molecules of 5878 and 3337 nts in length, excluding the polyA tails. Each genome segment contained one large ORF that shared homology and phylogenetic identity with members of the family Secoviridae. Field survey showed JYMaV and JaBV were widely distributed in jujube trees in Beijing. CONCLUSION: Two new viruses were identified from jujube plants, and mixed infections of JYMaV and JaBV were common in jujube in Beijing.


Asunto(s)
Badnavirus , Coinfección , Ziziphus , Filogenia , Ziziphus/genética , Coinfección/genética , Frutas , Genoma Viral , Badnavirus/genética , ARN
12.
Biochem Genet ; 61(6): 2425-2442, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37106171

RESUMEN

One of the most important qualities of jujube fruit is its color. Chlorophyll, carotenoid, and anthocyanin all play important roles in the coloring of jujube fruit. However, few studies have focused on the pigment molecular mechanism. In the present study, jujube peels of 'Sanbianhong' in three growth stages were evaluated for their gene expression characteristics and gene regulation related to pigment formation using the transcriptome sequencing analysis. A total of 84.86 Gb of clean data were obtained in the analysis. In the FS1 vs. FS3, FS1 vs. FS5, and FS3 vs. FS5, 4,530, 11,012, and 9,072 differentially expressed genes (DEGs) were identified, respectively. The inter-group screening among the three comparisons yielded 1430 common DEGs. Among these DEGs, 27, 16, and 28 genes were enriched in chlorophyll, carotenoid, and anthocyanin metabolic pathways, respectively. Twelve genes were chosen at random, and the accuracy of the transcriptome data were confirmed using qRT-PCR. The molecular mechanism underlying the pigmentation of jujube fruit was elucidated at the transcriptome level, which would provide a scientific basis for the subsequent functional studies on the color-regulating genes of jujube fruits.


Asunto(s)
Transcriptoma , Ziziphus , Ziziphus/genética , Ziziphus/metabolismo , Frutas/metabolismo , Antocianinas/genética , Carotenoides/metabolismo , Clorofila/metabolismo
13.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895156

RESUMEN

Jujube fruit is rich in linoleic acid and other bioactive components and has great potential to be used for the development of functional foods. However, the roles of FAD2 genes in linoleic acid biosynthesis in jujube fruit remain unclear. Here, we identified 15 major components in jujube and found that linoleic acid was the main unsaturated fatty acid; major differences in the content and distribution of linoleic acid in the pulp and seeds were observed, and levels of linoleic acid decreased during fruit maturation. Analysis of the fatty acid metabolome, genome, and gene expression patterns of cultivated and wild-type jujube revealed five ZjFAD2 family members highly related to linoleic acid biosynthesis. The heterologous expression of these five ZjFAD2 family members in tobacco revealed that all five of these genes increased the content of linoleic acid. Additionally, transient expression of these genes in jujube fruit and the virus-induced gene silencing (VIGS) test further confirmed the key roles of ZjFAD2-11 and ZjFAD2-1 in the biosynthesis of linoleic acid. The results of this research provide valuable insights into the molecular mechanism underlying linoleic acid synthesis in jujube and will aid the development of quality-oriented breeding strategies.


Asunto(s)
Frutas , Ziziphus , Frutas/genética , Ziziphus/genética , Ácido Linoleico , Fitomejoramiento
14.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373459

RESUMEN

Jujube witches' broom disease (JWB), caused by Candidatus Phytoplasma ziziphi, is the most destructive phytoplasma disease threatening the jujube industry. Tetracycline derivatives treatments have been validated to be capable of recovering jujube trees from phytoplasma infection. In this study, we reported that oxytetracycline hydrochloride (OTC-HCl) trunk injection treatment could recover more than 86% of mild JWB-diseased trees. In order to explore the underlying molecular mechanism, comparative transcriptomic analysis of healthy control (C group), JWB-diseased (D group) and OTC-HCl treated JWB-diseased (T group) jujube leaves was performed. In total, 755 differentially expressed genes (DEGs), including 488 in 'C vs. D', 345 in 'D vs. T' and 94 in 'C vs. T', were identified. Gene enrichment analysis revealed that these DEGs were mainly involved in DNA and RNA metabolisms, signaling, photosynthesis, plant hormone metabolism and transduction, primary and secondary metabolisms, their transportations, etc. Notably, most of the DEGs identified in 'C vs. D' displayed adverse change patterns in 'D vs. T', suggesting that the expression of these genes was restored after OTC-HCl treatment. Our study revealed the influences of JWB phytoplasma infection and OTC-HCl treatment on gene expression profiling in jujube and would be helpful for understanding the chemotherapy effects of OTC-HCl on JWB-diseased jujube.


Asunto(s)
Cytisus , Oxitetraciclina , Phytoplasma , Ziziphus , Enfermedad por Fitoplasma , Ziziphus/genética , Ziziphus/metabolismo , Oxitetraciclina/farmacología , Cytisus/genética , Enfermedades de las Plantas/genética , Phytoplasma/genética , Perfilación de la Expresión Génica
15.
BMC Genomics ; 23(1): 83, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35086490

RESUMEN

BACKGROUND: Ziziphus hajarensis is an endemic plant species well-distributed in the Western Hajar mountains of Oman. Despite its potential medicinal uses, little is known regarding its genomic architecture, phylogenetic position, or evolution. Here we sequenced and analyzed the entire chloroplast (cp) genome of Z. hajarensis to understand its genetic organization, structure, and phylogenomic disposition among Rhamnaceae species. RESULTS: The results revealed the genome of Z. hajarensis cp comprised 162,162 bp and exhibited a typical quadripartite structure, with a large single copy (LSC) region of 895,67 bp, a small single copy (SSC) region of 19,597 bp and an inverted repeat (IR) regions of 26,499 bp. In addition, the cp genome of Z. hajarensis comprises 126 genes, including 82 protein-coding genes, eight rRNA genes, and 36 tRNA genes. Furthermore, the analysis revealed 208 microsatellites, 96.6% of which were mononucleotides. Similarly, a total of 140 repeats were identified, including 11 palindromic, 24 forward, 14 reverse, and 104 tandem repeats. The whole cp genome comparison of Z. hajarensis and nine other species from family Rhamnaceae showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. Comparative phylogenetic analysis based on the complete cp genome, 66 shared genes and matK gene revealed that Z. hajarensis shares a clade with Z. jujuba and that the family Rhamnaceae is the closest family to Barbeyaceae and Elaeagnaceae. CONCLUSION: All the genome features such as genome size, GC content, genome organization and gene order were highly conserved compared to the other related genomes. The whole cp genome of Z. hajarensis gives fascinating insights and valuable data that may be used to identify related species and reconstruct the phylogeny of the species.


Asunto(s)
Genoma del Cloroplasto , Plantas Medicinales , Rhamnaceae , Ziziphus , Genómica , Repeticiones de Microsatélite , Filogenia , Plantas Medicinales/genética , Ziziphus/genética
16.
BMC Genomics ; 23(1): 438, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35698031

RESUMEN

BACKGROUND: Elevated temperature and drought stress have substantial impacts on fruit quality, especially in terms of sugar metabolism and content. ß-Amylase (BAM) plays a critical role in regulating jujube fruit sugar levels and abiotic stress response. Nevertheless, little is known about the regulatory functions of the BAM genes in jujube fruit. RESULTS: Nine jujube BAM genes were identified, clustered into four groups, and characterized to elucidate their structure, function, and distribution. Multiple sequence alignment and gene structure analysis showed that all ZjBAM genes contain Glu-186 and Glu-380 residues and are highly conserved. Phylogenetic and synteny analysis further indicated that the ZjBAM gene family is evolutionarily conserved and formed collinear pairs with the BAM genes of peach, apple, poplar, Arabidopsis thaliana, and cucumber. A single tandem gene pair was found within the ZjBAM gene family and is indicative of putative gene duplication events. We also explored the physicochemical properties, conserved motifs, and chromosomal and subcellular localization of ZjBAM genes as well as the interaction networks and 3D structures of ZjBAM proteins. A promoter cis-acting element analysis suggested that ZjBAM promoters comprise elements related to growth, development, phytohormones, and stress response. Furthermore, a metabolic pathways annotation analysis showed that ZjBAMs are significantly upregulated in the starch and sucrose metabolism, thereby controlling starch-maltose interconversion and hydrolyzing starch to maltose. Transcriptome and qRT-PCR analyses revealed that ZjBAMs respond positively to elevated temperature and drought stress. Specifically, ZjBAM1, ZjBAM2, ZjBAM5, and ZjBAM6 are significantly upregulated in response to severe drought. Bimolecular fluorescence complementation analysis demonstrated ZjBAM1-ZjAMY3, ZjBAM8-ZjDPE1, and ZjBAM7-ZjDPE1 protein interactions that were mainly present in the plasma membrane and nucleus. CONCLUSION: The jujube BAM gene family exhibits high evolutionary conservation. The various expression patterns of ZjBAM gene family members indicate that they play key roles in jujube growth, development, and abiotic stress response. Additionally, ZjBAMs interact with α-amylase and glucanotransferase. Collectively, the present study provides novel insights into the structure, evolution, and functions of the jujube BAM gene family, thus laying a foundation for further exploration of ZjBAM functional mechanisms in response to elevated temperature and drought stress, while opening up avenues for the development of economic forests in arid areas.


Asunto(s)
Ziziphus , beta-Amilasa , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Maltosa/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Estrés Fisiológico/genética , Azúcares/metabolismo , Ziziphus/genética , beta-Amilasa/genética , beta-Amilasa/metabolismo
17.
BMC Plant Biol ; 21(1): 527, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34763664

RESUMEN

BACKGROUND: SEPALLATA3 (SEP3), which is conserved across various plant species, plays essential and various roles in flower and fruit development. However, the regulatory network of the role of SEP3 in flowering time at the molecular level remained unclear. RESULTS: Here, we investigated that SEP3 in Ziziphus jujuba Mill. (ZjSEP3) was expressed in four floral organs and exhibited strong transcriptional activation activity. ZjSEP3 transgenic Arabidopsis showed an early-flowering phenotype and altered the expression of some genes related to flowering. Among them, the expression of LATE ELONGATED HYPOCOTYL (AtLHY), the key gene of circadian rhythms, was significantly suppressed. Yeast one-hybrid (Y1H) and electrophoretic mobility shift assays (EMSAs) further verified that ZjSEP3 inhibited the transcription of AtLHY by binding to the CArG-boxes in its promoter. Moreover, ZjSEP3 also could bind to the ZjLHY promoter and the conserved binding regions of ZjSEP3 were found in the LHY promoter of various plant species. The ectopic regulatory pathway of ZjSEP3-AtLHY was further supported by the ability of 35S::AtLHY to rescue the early-flowering phenotype in ZjSEP3 transgenic plants. In ZjSEP3 transgenic plants, total chlorophyll content and the expression of genes involved in chlorophyll synthesis increased during vegetative stages, which should contribute to its early flowering and relate to the regulatory of AtLHY. CONCLUSION: Overall, ZjSEP3-AtLHY pathway represents a novel regulatory mechanism that is involved in the regulation of flowering time.


Asunto(s)
Flores/genética , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Ziziphus/genética , Secuencias de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Secuencia Conservada , Flores/crecimiento & desarrollo , Genes de Plantas , Filogenia , Plantas Modificadas Genéticamente/genética , Transcripción Genética , Transcriptoma
18.
Plant Biotechnol J ; 19(3): 517-531, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32946650

RESUMEN

The Chinese jujube (Ziziphus jujuba Mill.), a member of the Rhamnaceae family, is an important perennial fruit tree crop of substantial economic, ecological and nutritional value, and is also used as a traditional herbal medicine. Here, we report the resequencing of 493 jujube accessions, including 202 wild and 291 cultivated accessions at >16× depth. Our population genomic analyses revealed that the Shanxi-Shaanxi area of China was jujube's primary domestication centre and that jujube was then disseminated into East China before finally extending into South China. Divergence events analysis indicated that Ziziphus acidojujuba and Ziziphus jujuba diverged around 2.7 Mya, suggesting the interesting possibility that a long pre-domestication period may have occurred prior to human intervention. Using the large genetic polymorphism data set, we identified a 15-bp tandem insertion in the promoter of the jujube ortholog of the POLLEN DEFECTIVE IN GUIDANCE 1 (POD1) gene, which was strongly associated with seed-setting rate. Integrating genome-wide association study (GWAS), transcriptome data, expression analysis and transgenic validation in tomato, we identified a DA3/UBIQUITIN-SPECIFIC PROTEASE 14 (UBP14) ortholog, which negatively regulate fruit weight in jujube. We also identified candidate genes, which have likely influenced the selection of fruit sweetness and crispness texture traits among fresh and dry jujubes. Our study not only illuminates the genetic basis of jujube evolution and domestication and provides a deep and rich genomic resource to facilitate both crop improvement and hypothesis-driven basic research, but also identifies multiple agriculturally important genes for this unique perennial tree fruit species.


Asunto(s)
Ziziphus , China , Frutas/genética , Estudio de Asociación del Genoma Completo , Genómica , Ziziphus/genética
19.
Plant Cell Environ ; 44(10): 3257-3272, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34189742

RESUMEN

Comprehensively controlling phytoplasma-associated jujube witches' broom (JWB) disease is extremely challenging for the jujube industry. Although the pathogenesis of phytoplasma disease has been highlighted in many plant species, the release of lateral buds from dormancy under JWB phytoplasma infection has not been characterized in woody perennial jujube. Here, two 16SrV-B group phytoplasma effectors, SJP1 and SJP2, were experimentally determined to induce witches' broom with increased lateral branches. In vivo interaction and subcellular localization analyses showed that both SJP1 and SJP2 were translocated from the cytoplasm to the nucleus to target the CYC/TB1-TCP transcription factor ZjBRC1. The N- and C-terminal coiled-coil domains of SJP1 and SJP2 were required for the TCP-binding ability. ZjBRC1 bound directly to the auxin efflux carrier ZjPIN1c/3 promoters and down-regulated their expression to promote the accumulation of endogenous auxin indole-3-acetic acid in jujube calli. Furthermore, JWB phytoplasma infection suppressed ZjBRC1 accumulation and induced ZjPIN1c/3 expression to stimulate lateral bud outgrowth. Therefore, SJP1 and SJP2 stimulate lateral bud outgrowth, at least partly, by repressing the ZjBRC1-controlled auxin efflux channel in jujube, representing a potential strategy for comprehensive phytoplasma-associated disease control and a resource for gene editing breeding to create new cultivars with varying degrees of shoot branching.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Transducción de Señal/genética , Ziziphus/crecimiento & desarrollo , Ziziphus/genética , Phytoplasma/fisiología , Proteínas de Plantas/metabolismo , Ziziphus/metabolismo
20.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921761

RESUMEN

RNA interference is an evolutionary conserved mechanism by which organisms regulate the expression of genes in a sequence-specific manner to modulate defense responses against various abiotic or biotic stresses. Hops are grown for their use in brewing and, in recent years, for the pharmaceutical industry. Hop production is threatened by many phytopathogens, of which Verticillium, the causal agent of Verticillium wilt, is a major contributor to yield losses. In the present study, we performed identification, characterization, phylogenetic, and expression analyses of three Argonaute, two Dicer-like, and two RNA-dependent RNA polymerase genes in the susceptible hop cultivar Celeia and the resistant cultivar Wye Target after infection with Verticillium nonalfalfae. Phylogeny results showed clustering of hop RNAi proteins with their orthologues from the closely related species Cannabis sativa, Morus notabilis and Ziziphus jujuba which form a common cluster with species of the Rosaceae family. Expression analysis revealed downregulation of argonaute 2 in both cultivars on the third day post-inoculation, which may result in reduced AGO2-siRNA-mediated posttranscriptional gene silencing. Both cultivars may also repress ta-siRNA biogenesis at different dpi, as we observed downregulation of argonaute 7 in the susceptible cultivar on day 1 and downregulation of RDR6 in the resistant cultivar on day 3 after inoculation.


Asunto(s)
Humulus/genética , Humulus/microbiología , MicroARNs/metabolismo , Verticillium/patogenicidad , Cannabis/genética , Cannabis/metabolismo , Cannabis/microbiología , Interacciones Huésped-Patógeno , Humulus/metabolismo , MicroARNs/genética , Filogenia , Interferencia de ARN , Ziziphus/genética , Ziziphus/metabolismo , Ziziphus/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA