Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(47): e2312453120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956278

RESUMEN

To mediate critical host-microbe interactions in the human small intestine, Paneth cells constitutively produce abundant levels of α-defensins and other antimicrobials. We report that the expression profile of these antimicrobials is dramatically askew in human small intestinal organoids (enteroids) as compared to that in paired tissue from which they are derived, with a reduction of α-defensins to nearly undetectable levels. Murine enteroids, however, recapitulate the expression profile of Paneth cell α-defensins seen in tissue. WNT/TCF signaling has been found to be instrumental in the regulation of α-defensins, yet in human enteroids exogenous stimulation of WNT signaling appears insufficient to rescue α-defensin expression. By stark contrast, forkhead box O (FOXO) inhibitor AS1842856 induced the expression of α-defensin mRNA in enteroids by >100,000-fold, restoring DEFA5 and DEFA6 to levels comparable to those found in primary human tissue. These results newly identify FOXO signaling as a pathway of biological and potentially therapeutic relevance for the regulation of human Paneth cell α-defensins in health and disease.


Asunto(s)
Antiinfecciosos , alfa-Defensinas , Humanos , Animales , Ratones , alfa-Defensinas/genética , alfa-Defensinas/farmacología , alfa-Defensinas/metabolismo , Intestinos , Intestino Delgado/metabolismo , Células de Paneth/metabolismo , Antiinfecciosos/metabolismo , Organoides/metabolismo
2.
PLoS Pathog ; 18(9): e1010851, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36174087

RESUMEN

During infection, Bacillus anthracis bacilli encounter potent antimicrobial peptides (AMPs) such as defensins. We examined the role that B. anthracis capsule plays in protecting bacilli from defensins and other cationic AMPs by comparing their effects on a fully virulent encapsulated wild type (WT) strain and an isogenic capsule-deficient capA mutant strain. We identified several human defensins and non-human AMPs that were capable of killing B. anthracis. The human alpha defensins 1-6 (HNP-1-4, HD-5-6), the human beta defensins 1-4 (HBD-1-4), and the non-human AMPs, protegrin, gramicidin D, polymyxin B, nisin, and melittin were all capable of killing both encapsulated WT and non-encapsulated capA mutant B. anthracis. However, non-encapsulated capA mutant bacilli were significantly more susceptible than encapsulated WT bacilli to killing by nearly all of the AMPs tested. We demonstrated that purified capsule bound HBD-2, HBD-3, and HNP-1 in an electrophoretic mobility shift assay. Furthermore, we determined that the capsule layer enveloping WT bacilli bound and trapped HBD-3, substantially reducing the amount reaching the cell wall. To assess whether released capsule might also play a protective role, we pre-incubated HBD-2, HBD-3, or HNP-1 with purified capsule before their addition to non-encapsulated capA mutant bacilli. We found that free capsule completely rescued the capA mutant bacilli from killing by HBD-2 and -3 while killing by HNP-1 was reduced to the level observed with WT bacilli. Together, these results suggest an immune evasion mechanism by which the capsule, both that enveloping the bacilli and released fragments, contributes to virulence by binding to and inhibiting the antimicrobial activity of cationic AMPs.


Asunto(s)
Bacillus anthracis , Nisina , alfa-Defensinas , beta-Defensinas , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Defensinas/genética , Defensinas/farmacología , Gramicidina , Humanos , Meliteno , Polimixina B , alfa-Defensinas/farmacología
3.
J Virol ; 96(7): e0205321, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35285683

RESUMEN

Fecal-oral pathogens encounter constitutively expressed enteric alpha-defensins in the intestine during replication and transmission. Alpha-defensins can be potently antiviral and antibacterial; however, their primary sequences, the number of isoforms, and their activity against specific microorganisms often vary greatly between species, reflecting adaptation to species-specific pathogens. Therefore, alpha-defensins might influence not only microbial evolution and tissue tropism within a host but also species tropism and zoonotic potential. To investigate these concepts, we generated a panel of enteric and myeloid alpha-defensins from humans, rhesus macaques, and mice and tested their activity against group A rotaviruses, an important enteric viral pathogen of humans and animals. Rotaviral adaptation to the rhesus macaque correlated with resistance to rhesus enteric, but not myeloid, alpha-defensins and sensitivity to human alpha-defensins. While mouse rotaviral infection was increased in the presence of mouse enteric alpha-defensins, two prominent genotypes of human rotaviruses were differentially sensitive to human enteric alpha-defensins. Furthermore, the effects of cross-species alpha-defensins on human and mouse rotaviruses did not follow an obvious pattern. Thus, exposure to alpha-defensins may have shaped the evolution of some, but not all, rotaviruses. We then used a genetic approach to identify the viral attachment and penetration protein, VP4, as a determinant of alpha-defensin sensitivity. Our results provide a foundation for future studies of the VP4-dependent mechanism of defensin neutralization, highlight the species-specific activities of alpha-defensins, and focus future efforts on a broader range of rotaviruses that differ in VP4 to uncover the potential for enteric alpha-defensins to influence species tropism. IMPORTANCE Rotavirus is a leading cause of severe diarrhea in young children. Like other fecal-oral pathogens, rotaviruses encounter abundant, constitutively expressed defensins in the small intestine. These peptides are a vital part of the vertebrate innate immune system. By investigating the impact that defensins from multiple species have on the infectivity of different strains of rotavirus, we show that some rotaviral infections can be inhibited by defensins. We also found that some, but not all, rotaviruses may have evolved resistance to defensins in the intestine of their host species, and some even appropriate defensins to increase their infectivity. Because rotaviruses infect a broad range of animals and rotaviral infections are highly prevalent in children, identifying immune defenses against infection and how they vary across species and among viral genotypes is important for our understanding of the evolution, transmission, and zoonotic potential of these viruses as well as the improvement of vaccines.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , alfa-Defensinas , Animales , Humanos , Intestino Delgado/inmunología , Intestino Delgado/virología , Macaca mulatta , Ratones , Rotavirus/efectos de los fármacos , Rotavirus/genética , Infecciones por Rotavirus/fisiopatología , Infecciones por Rotavirus/virología , Proteínas Estructurales Virales/metabolismo , alfa-Defensinas/genética , alfa-Defensinas/metabolismo , alfa-Defensinas/farmacología
4.
Immunity ; 41(5): 671-3, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25517605

RESUMEN

In addition to having antimicrobial properties, defensins inactivate various structurally unrelated bacterial toxins by a yet unknown manner. In this issue of Immunity, Kudryashova et al. (2014b) provide insights into mechanisms by which human ?-defensins destabilize and inactivate bacterial toxins.


Asunto(s)
Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , alfa-Defensinas/metabolismo , alfa-Defensinas/farmacología , beta-Defensinas/metabolismo , Humanos
5.
Immunity ; 41(5): 709-21, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25517613

RESUMEN

Defensins are short cationic, amphiphilic, cysteine-rich peptides that constitute the front-line immune defense against various pathogens. In addition to exerting direct antibacterial activities, defensins inactivate several classes of unrelated bacterial exotoxins. To date, no coherent mechanism has been proposed to explain defensins' enigmatic efficiency toward various toxins. In this study, we showed that binding of neutrophil ?-defensin HNP1 to affected bacterial toxins caused their local unfolding, potentiated their thermal melting and precipitation, exposed new regions for proteolysis, and increased susceptibility to collisional quenchers without causing similar effects on tested mammalian structural and enzymatic proteins. Enteric ?-defensin HD5 and ?-defensin hBD2 shared similar toxin-unfolding effects with HNP1, albeit to different degrees. We propose that protein susceptibility to inactivation by defensins is contingent to their thermolability and conformational plasticity and that defensin-induced unfolding is a key element in the general mechanism of toxin inactivation by human defensins.


Asunto(s)
Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , alfa-Defensinas/metabolismo , alfa-Defensinas/farmacología , beta-Defensinas/metabolismo , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Línea Celular , Quimotripsina/metabolismo , Enterotoxinas/metabolismo , Humanos , Unión Proteica , Conformación Proteica , Desplegamiento Proteico , Proteolisis , Proteínas Represoras/metabolismo , Termolisina/metabolismo , alfa-Defensinas/inmunología
6.
Amino Acids ; 54(2): 289-297, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35037097

RESUMEN

Defensin is a cysteine-rich antimicrobial peptide with three disulphide bonds under normal oxidative conditions. Cryptdin-4 (Crp4) is a defensin secreted by Paneth cells in the small intestine of mice, and only reduced Crp4 (Crp4red) shows activity against enteric commensal bacteria, although both oxidised Crp4 (Crp4ox) and Crp4red can kill non-commensal bacteria. To investigate the molecular factors that affect the potent antimicrobial activity of Crp4red, the bactericidal activities of Crp4ox and Crp4red, Crp4 with all Cys residues substituted with Ser peptide (6C/S-Crp4), and Crp4 with all thiol groups modified by N-ethylmaleimide (NEM-Crp4) were assessed. All peptides showed bactericidal activity against non-commensal bacteria, whereas Crp4red and NEM-Crp4 showed bactericidal activity against commensal bacteria. These potent peptides exhibited high hydrophobicity, which was strongly correlated with membrane insertion. Intriguingly, Crp4ox formed electrostatic interactions with the membrane surface of bacteria, even without exerting bactericidal activity. Moreover, the bactericidal activity of both oxidised and reduced forms of Crp4 was abolished by inhibition of electrostatic interactions; this finding suggests that Crp4red targets bacterial membranes. Finally, a liposome leakage assay against lipids extracted from commensal bacteria demonstrated a correlation with bactericidal activity. These results suggest that the potent bactericidal activity of Crp4red is derived from its hydrophobicity, and the bactericidal mechanism involves disruption of the bacterial membrane. Findings from this study provide a better understanding of the bactericidal mechanism of both Crp4ox and Crp4red.


Asunto(s)
alfa-Defensinas , Secuencia de Aminoácidos , Animales , Bacterias , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Precursores de Proteínas , alfa-Defensinas/química , alfa-Defensinas/farmacología , alfa-Defensinas/fisiología
7.
Microb Cell Fact ; 21(1): 77, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35527241

RESUMEN

The growing emergence of microorganisms resistant to antibiotics has prompted the development of alternative antimicrobial therapies. Among them, the antimicrobial peptides produced by innate immunity, which are also known as host defense peptides (HDPs), hold great potential. They have been shown to exert activity against both Gram-positive and Gram-negative bacteria, including those resistant to antibiotics. These HDPs are classified into three categories: defensins, cathelicidins, and histatins. Traditionally, HDPs have been chemically synthesized, but this strategy often limits their application due to the high associated production costs. Alternatively, some HDPs have been recombinantly produced, but little is known about the impact of the bacterial strain in the recombinant product. This work aimed to assess the influence of the Escherichia coli strain used as cell factory to determine the activity and stability of recombinant defensins, which have 3 disulfide bonds. For that, an α-defensin [human α-defensin 5 (HD5)] and a ß-defensin [bovine lingual antimicrobial peptide (LAP)] were produced in two recombinant backgrounds. The first one was an E. coli BL21 strain, which has a reducing cytoplasm, whereas the second was an E. coli Origami B, that is a strain with a more oxidizing cytoplasm. The results showed that both HD5 and LAP, fused to Green Fluorescent Protein (GFP), were successfully produced in both BL21 and Origami B strains. However, differences were observed in the HDP production yield and bactericidal activity, especially for the HD5-based protein. The HD5 protein fused to GFP was not only produced at higher yields in the E. coli BL21 strain, but it also showed a higher quality and stability than that produced in the Origami B strain. Hence, this data showed that the strain had a clear impact on both HDPs quantity and quality.


Asunto(s)
Antiinfecciosos , alfa-Defensinas , Animales , Antibacterianos/química , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/metabolismo , Bovinos , Escherichia coli/genética , Escherichia coli/metabolismo , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Humanos , alfa-Defensinas/química , alfa-Defensinas/genética , alfa-Defensinas/farmacología
8.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35562899

RESUMEN

Rising incidences and mortalities have drawn attention to Clostridioides difficile infections (CDIs) in recent years. The main virulence factors of this bacterium are the exotoxins TcdA and TcdB, which glucosylate Rho-GTPases and thereby inhibit Rho/actin-mediated processes in cells. This results in cell rounding, gut barrier disruption and characteristic clinical symptoms. So far, treatment of CDIs is limited and mainly restricted to some antibiotics, often leading to a vicious circle of antibiotic-induced disease recurrence. Here, we demonstrate the protective effect of the human antimicrobial peptide α-defensin-6 against TcdA, TcdB and the combination of both toxins in vitro and in vivo and unravel the underlying molecular mechanism. The defensin prevented toxin-mediated glucosylation of Rho-GTPases in cells and protected human cells, model epithelial barriers as well as zebrafish embryos from toxic effects. In vitro analyses revealed direct binding to TcdB in an SPR approach and the rapid formation of TcdB/α-defensin-6 complexes, as analyzed with fluorescent TcdB by time-lapse microscopy. In conclusion, the results imply that α-defensin-6 rapidly sequesters the toxin into complexes, which prevents its cytotoxic activity. These findings extend the understanding of how human peptides neutralize bacterial protein toxins and might be a starting point for the development of novel therapeutic options against CDIs.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Infecciones por Clostridium , alfa-Defensinas , Animales , Antibacterianos/farmacología , Anticuerpos Antibacterianos , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Infecciones por Clostridium/microbiología , Enterotoxinas/química , Humanos , Pez Cebra/metabolismo , alfa-Defensinas/farmacología , Proteínas de Unión al GTP rho/metabolismo
9.
Semin Cell Dev Biol ; 88: 138-146, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29355606

RESUMEN

The gut is the biggest immune organ in the body that encloses commensal microbiota which aids in food digestion. Paneth cells, positioned at the frontline of host-microbiota interphase, can modulate the composition of microbiota. Paneth cells achieve this via the delivery of microbicidal substances, among which enteric α-defensins play the primary role. If microbiota is dysregulated, it can impact the function of the local mucosal immune system. Importantly, this system is also exposed to an enormous number of antigens which are derived from the gut-resident microbiota and processed food, and may potentially trigger undesirable local inflammatory responses. To understand the intricate regulations and liaisons between Paneth cells, microbiota and the immune system in this intestinal-specific setting, one must consider their mode of interaction in a wider context of regulatory processes which impose immune tolerance not only to self, but also to microbiota and food-derived antigens. These include, but are not limited to, tolerogenic mechanisms of central tolerance in the thymus and peripheral tolerance in the secondary lymphoid organs, and the intestine itself. Defects in these processes can compromise homeostasis in the intestinal mucosal immunity. In this review, which is focused on tolerance to intestinal antigens and its relevance for the pathogenesis of gut immune diseases, we provide an outline of such multilayered immune control mechanisms and highlight functional links that underpin their cooperative nature.


Asunto(s)
Disbiosis/prevención & control , Tracto Gastrointestinal/inmunología , Células de Paneth/inmunología , Tolerancia Periférica , alfa-Defensinas/inmunología , Animales , Tolerancia Central , Disbiosis/inmunología , Disbiosis/microbiología , Microbioma Gastrointestinal/inmunología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Expresión Génica/inmunología , Homeostasis/inmunología , Humanos , Inmunidad Mucosa/efectos de los fármacos , Inflamación , Células de Paneth/efectos de los fármacos , Células de Paneth/microbiología , Simbiosis/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/microbiología , alfa-Defensinas/biosíntesis , alfa-Defensinas/farmacología
10.
Br J Haematol ; 194(1): 44-52, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34053084

RESUMEN

The inflammatory response to SARS/CoV-2 (COVID-19) infection may contribute to the risk of thromboembolic complications. α-Defensins, antimicrobial peptides released from activated neutrophils, are anti-fibrinolytic and prothrombotic in vitro and in mouse models. In this prospective study of 176 patients with COVID-19 infection, we found that plasma levels of α-defensins were elevated, tracked with disease progression/mortality or resolution and with plasma levels of interleukin-6 (IL-6) and D-dimers. Immunohistochemistry revealed intense deposition of α-defensins in lung vasculature and thrombi. IL-6 stimulated the release of α-defensins from neutrophils, thereby accelerating coagulation and inhibiting fibrinolysis in human blood, imitating the coagulation pattern in COVID-19 patients. The procoagulant effect of IL-6 was inhibited by colchicine, which blocks neutrophil degranulation. These studies describe a link between inflammation and the risk of thromboembolism, and they identify a potential new approach to mitigate this risk in patients with COVID-19 and potentially in other inflammatory prothrombotic conditions.


Asunto(s)
COVID-19/metabolismo , Inflamación/metabolismo , Tromboembolia/prevención & control , alfa-Defensinas/sangre , Adulto , Anciano , Animales , Coagulación Sanguínea/efectos de los fármacos , COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/virología , Estudios de Casos y Controles , Colchicina/farmacología , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Humanos , Inflamación/complicaciones , Interleucina-6/sangre , Interleucina-6/farmacología , Masculino , Ratones , Persona de Mediana Edad , Modelos Animales , Neutrófilos/efectos de los fármacos , Estudios Prospectivos , Factores de Riesgo , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Tromboembolia/etiología , Trombosis/etiología , Trombosis/metabolismo , Moduladores de Tubulina/farmacología , alfa-Defensinas/farmacología
11.
Physiol Genomics ; 51(12): 657-667, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31762409

RESUMEN

Rhesus theta defensin-1 (RTD-1), a macrocyclic immunomodulatory host defense peptide from Old World monkeys, is therapeutic in pristane-induced arthritis (PIA) in rats, a model of rheumatoid arthritis (RA). RNA-sequence (RNA-Seq) analysis was used to interrogate the changes in gene expression in PIA rats, which identified 617 differentially expressed genes (DEGs) in PIA synovial tissue of diseased rats. Upstream regulator analysis showed upregulation of gene expression pathways regulated by TNF, IL1B, IL6, proinflammatory cytokines, and matrix metalloproteases (MMPs) involved in RA. In contrast, ligand-dependent nuclear receptors like the liver X-receptors NR1H2 and NR1H3 and peroxisome proliferator-activated receptor gamma (PPARG) were downregulated in arthritic synovia. Daily RTD-1 treatment of PIA rats for 1-5 days following disease presentation modulated 340 of the 617 disease genes, and synovial gene expression in PIA rats treated 5 days with RTD-1 closely resembled the gene signature of naive synovium. Systemic RTD-1 inhibited proinflammatory upstream regulators such as TNF, IL1, and IL6 and activated antiarthritic ligand-dependent nuclear receptor pathways, including PPARG, NR1H2, and NR1H3, that were suppressed in untreated PIA rats. RTD-1 also inhibited proinflammatory responses in IL-1ß-stimulated human RA fibroblast-like synoviocytes (FLS) in vitro and diminished expression of human orthologs of disease genes that are induced in rat PIA synovium. Thus, the antiarthritic mechanisms of systemic RTD-1 include homeostatic regulation of arthritogenic gene networks in a manner that correlates temporally with clinical resolution of rat PIA.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Fibroblastos/metabolismo , Mediadores de Inflamación/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Membrana Sinovial/metabolismo , Transcriptoma/efectos de los fármacos , alfa-Defensinas/farmacología , alfa-Defensinas/uso terapéutico , Animales , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/metabolismo , Línea Celular , Cercopithecidae , Citocinas/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunosupresores/farmacología , RNA-Seq , Ratas , Sinoviocitos/metabolismo , Terpenos/farmacología , Regulación hacia Arriba
12.
Biomacromolecules ; 20(11): 4171-4179, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31596574

RESUMEN

Catheter-related infection is a great challenge to modern medicine, which causes significant economic burden and increases patient morbidity. Hence, there is a great requirement for functionalized surfaces with inherently antibacterial properties and biocompatibility that prevent bacterial colonization and attachment of blood cells. Herein, we developed a strategy for constructing polymer brushes with hierarchical architecture on polyurethane (PU) via surface-initiated atom-transfer radical polymerization (SI-ATRP). Surface-functionalized PU (PU-DMH) was readily prepared, which comprised of poly(3-[dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azaniumyl]propane-1-sulfonate) (PDMAPS) brushes as the lower layer and antimicrobial peptide-conjugated poly(methacrylic acid) (PMAA) brushes as the upper layer. The PU-DMH surface showed excellent bactericidal property against both Gram-positive and Gram-negative bacteria and could prevent accumulation of bacterial debris on surfaces. Simultaneously, the PU-DMH samples possessed good hemocompatibility and low cytotoxicity. Furthermore, the integrated antifouling and bactericidal properties of PU-DMH under hydrodynamic conditions were confirmed by an in vitro circulating model. The functionalized surface possessed persistent antifouling and bactericidal performances both under static and hydrodynamic conditions. The microbiological and histological results of animal experiments also verified the in vivo anti-infection performance. The present work might find promising clinical applications for preventing catheter-related infection.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Infecciones Relacionadas con Catéteres/prevención & control , Poliuretanos/farmacología , alfa-Defensinas/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Incrustaciones Biológicas , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Infecciones Relacionadas con Catéteres/microbiología , Catéteres/microbiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/patogenicidad , Humanos , Metacrilatos/química , Polimerizacion , Polímeros/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacología , Poliuretanos/química , Propiedades de Superficie
13.
Proc Natl Acad Sci U S A ; 113(16): 4350-5, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27044108

RESUMEN

Neutrophils are the first and most numerous cells to arrive at the site of an inflammatory insult and are among the first to die. We previously reported that alpha defensins, released from apoptotic human neutrophils, augmented the antimicrobial capacity of macrophages while also inhibiting the biosynthesis of proinflammatory cytokines. In vivo, alpha defensin administration protected mice from inflammation, induced by thioglychollate-induced peritonitis or following infection withSalmonella entericaserovar Typhimurium. We have now dissected the antiinflammatory mechanism of action of the most abundant neutrophil alpha defensin, Human Neutrophil Peptide 1 (HNP1). Herein we show that HNP1 enters macrophages and inhibits protein translation without inducing the unfolded-protein response or affecting mRNA stability. In a cell-free in vitro translation system, HNP1 powerfully inhibited both cap-dependent and cap-independent mRNA translation while maintaining mRNA polysomal association. This is, to our knowledge, the first demonstration of a peptide released from one cell type (neutrophils) directly regulating mRNA translation in another (macrophages). By preventing protein translation, HNP1 functions as a "molecular brake" on macrophage-driven inflammation, ensuring both pathogen clearance and the resolution of inflammation with minimal bystander tissue damage.


Asunto(s)
Macrófagos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella typhimurium , alfa-Defensinas/metabolismo , Animales , Humanos , Macrófagos/patología , Ratones , Infecciones por Salmonella/patología , alfa-Defensinas/farmacología
14.
Infect Immun ; 86(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30249746

RESUMEN

Host phagocytic cells are crucial players in initial defense against Candida albicans infection. C. albicans utilizes MAP kinases and Ras1 stress response signaling pathways to protect itself from killing by immune cells. In this study, we tested the importance of these pathways in C. albicans phagocytosis by neutrophils and subsequent phagosomal survival. Phagocytosis was influenced by C. albicans morphology, so hyphal length of >10 µm reduced the phagocytic index (PI) 2- to 3-fold in human neutrophils. Primary human neutrophils killed 81% of phagocytosed C. albicans, while primary mouse neutrophils killed 63% of yeasts. We found that both the C. albicans Cek1 and Hog1 pathways were required for survival of phagocytosed yeast, whereas deletion of C. albicansRAS1 resulted in an 84% increase in survival within neutrophils compared to that of the wild type (WT). The absence of Ras1 did not alter reactive oxygen species (ROS) production by C. albicans; however, phagocytosed C. albicans Δ/Δras1 cells reduced ROS release by neutrophils by 86%. Moreover, C. albicans Δ/Δras1 cells had increased resistance to hydrogen peroxide as a result of high levels of catalase activity. This phenotype was specific to Ras1, since these effects were not observed in the absence of its partner Cyr1 or with its downstream target Efg1. In addition, C. albicans Δ/Δras1 cells had a significantly increased resistance to nonoxidative killing by human neutrophil peptide 1 (HNP-1) that was reversed by restoring cellular cAMP levels. These data show that C. albicans Ras1 inactivation leads to fungal resistance to both oxidative and nonoxidative mechanisms of neutrophil phagosomal killing.


Asunto(s)
Candida albicans , Proteínas Fúngicas/genética , Neutrófilos/inmunología , Fagosomas/inmunología , Proteínas ras/genética , Animales , Células Cultivadas , Femenino , Proteínas Fúngicas/inmunología , Silenciador del Gen , Interacciones Huésped-Patógeno/inmunología , Humanos , Hifa/inmunología , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , alfa-Defensinas/farmacología , Proteínas ras/inmunología
15.
Artículo en Inglés | MEDLINE | ID: mdl-29158275

RESUMEN

The increasing incidence of multidrug-resistant Acinetobacter baumannii (MDRAb) infections worldwide has necessitated the development of novel antibiotics. Human defensin 5 (HD5) is an endogenous peptide with a complex architecture and antibacterial activity against MDRAb In the present study, we attempted to simplify the structure of HD5 by removing disulfide bonds. We found that the Cys2-4 bond was most indispensable for HD5 to inactivate MDRAb, although the antibacterial activity of the derivative was significantly attenuated. We then replaced the noncationic and nonhydrophobic residues with electropositive Arg to increase the antibacterial activity of HD5 derivative that contains a Cys2-4 bond, obtaining another derivative termed HD5d5. The in vitro antibacterial assay and irradiation-wound-infection animal experiment both showed that HD5d5 was much more effective than HD5 at eliminating MDRAb Further investigations revealed that HD5d5 efficiently bound to outer membrane lipid A and penetrated membranes, leading to bacterial collapse and peptide translocation. Compared to HD5, more HD5d5 molecules were located in the cytoplasm of MDRAb, and HD5d5 was more efficient at reducing the activities of superoxide dismutase and catalase, causing the accumulation of reactive oxygen species that are detrimental to microbes. In addition, HD5 failed to suppress the pathogenic outer membrane protein A of Acinetobacter baumannii (AbOmpA) at concentrations up to 50 µg/ml, whereas HD5d5 strongly bound to AbOmpA and exhibited a dramatic toxin-neutralizing ability, thus expanding the repertoire of drugs that is available to treat MDRAb infections.


Asunto(s)
Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica , Infección de Heridas/tratamiento farmacológico , alfa-Defensinas/farmacología , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/mortalidad , Infecciones por Acinetobacter/patología , Acinetobacter baumannii/genética , Acinetobacter baumannii/crecimiento & desarrollo , Acinetobacter baumannii/metabolismo , Animales , Antibacterianos/síntesis química , Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catalasa/antagonistas & inhibidores , Catalasa/genética , Catalasa/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Lípido A/metabolismo , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Ingeniería de Proteínas/métodos , Isoformas de Proteínas/síntesis química , Isoformas de Proteínas/farmacología , Transporte de Proteínas , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Análisis de Supervivencia , Irradiación Corporal Total , Infección de Heridas/microbiología , Infección de Heridas/mortalidad , Infección de Heridas/patología , alfa-Defensinas/síntesis química
16.
Biochem Biophys Res Commun ; 501(2): 454-457, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29738776

RESUMEN

Pseudomonas aeruginosa produces a large number of virulence factors, including the extracellular protein, Exotoxin A (ETA). Human Neutrophil Peptide 1 (HNP1) neutralizes the Exotoxin A. HNP1 belongs to the family of α-defensins, small effector peptides of the innate immune system that combat against microbial infections. Neutralization of bacterial toxins such as ETA by HNP1 is a novel biological function in addition to direct killing of bacteria. In this study, we report on the interaction between HNP-1 and Exotoxin A at the molecular level to allow for the design and development of potent antibacterial peptides as alternatives to classical antibiotics.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , ADP Ribosa Transferasas/toxicidad , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Exotoxinas/metabolismo , Exotoxinas/toxicidad , Factores de Virulencia/metabolismo , Factores de Virulencia/toxicidad , alfa-Defensinas/farmacología , Alanina/genética , Sustitución de Aminoácidos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Resonancia por Plasmón de Superficie , alfa-Defensinas/administración & dosificación , alfa-Defensinas/genética , alfa-Defensinas/metabolismo , Exotoxina A de Pseudomonas aeruginosa
17.
Appl Microbiol Biotechnol ; 102(11): 4817-4827, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29675800

RESUMEN

Human neutrophil peptide 1 (HNP1) is a small (3.44 kDa) cationic peptide that is a distinct member of the defensin family. HNP1 plays a crucial role in controlling bacterial infections, particularly by antibiotic-resistant bacteria, through membrane perforation patterns. The structural characteristics of HNP1's three intramolecular disulfide bridges cause difficulty in its synthesis via chemical methods. In this study, bioactive recombinant HNP1 was produced using the Pichia pastoris (P. Pichia) expression system. HNP1 was fused with the polyhedrin of Bombyx mori and enhanced green fluorescent protein (EGFP) to prevent HNP1 toxicity in yeast host cells under direct expression. An enterokinase protease cleavage site (amino acid sequence DDDDK) was designed upstream of the HNP1 peptide to obtain the antibacterial peptide HNP1 with native structure after it was cleaved by the enterokinase. The fusion HNP1 protein (FHNP1) was successfully expressed and had a molecular mass of approximately 62.6 kDa, as determined using SDS-PAGE and Western blot. Then, the recovered FHNP1 was digested and purified; Tricine-SDS-PAGE results showed that HNP1 was successfully released from FHNP1. Functional analysis of induction against antibiotic-resistant Helicobacter pylori (H. pylori) showed that it was challenging for HNP1 to acquire resistance to the antibiotic-resistant H. pylori. Moreover, in vitro studies showed that HNP1 exerted a strong effect against antibiotic-resistant H. pylori activity. Furthermore, the animal model of H. pylori infection established in vivo showed that HNP1 significantly reduced the colonization of antibiotic-resistant H. pylori in the stomach. Our study indicated that this could be a new potential avenue for large-scale production of HNP1 for therapeutic application against the antibiotic-resistant H. pylori infection in humans.


Asunto(s)
Helicobacter pylori/efectos de los fármacos , Pichia/genética , alfa-Defensinas/genética , alfa-Defensinas/farmacología , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/efectos de los fármacos , Infecciones por Helicobacter/tratamiento farmacológico , Humanos , alfa-Defensinas/metabolismo , alfa-Defensinas/uso terapéutico
18.
Clin Oral Investig ; 22(7): 2519-2525, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29372443

RESUMEN

OBJECTIVES: Antimicrobial peptides (AMPs) represent important facets of the immune system controlling infectious diseases. However, pathogens show varying susceptibilities to AMPs. This study investigates the susceptibilities of strains of Streptococcus mutans (SM), Actinomyces naeslundii (AN), and Lactobacillus spp. (LB) towards AMPs and if there are correlations between the appearance of such high-risk strains and clinical caries status. MATERIAL AND METHODS: Plaque samples were collected from patients along with clinical examinations. Bacterial strains were identified via selective media, matrix-assisted laser desorption/ionization analysis-time of flight (MALDI-TOF), and arbitrary-primed-PCR (AP-PCR). Each strain was tested for susceptibility to LL-37, HBD-2, HNP-1, and HNP-3 or phosphate-buffered saline as negative control in a biofilm model on hydroxylapatite discs. Survival rates and resulting risk classification for each strain were determined. Correlations were calculated between the number of high-risk strains (all/S. mutans) appearing in patients and their clinical caries status. RESULTS: Forty-seven patients were included with mean DMFT values of 11.4 ± 8.7. A total of 8 different SM, 30 LB, and 47 AN strains were detected. One-way ANOVA indicated that type/concentration of AMPs had major influence on reductions of Lactobacilli and Actinomyces. Seventeen strains of AN, 2 of SM, and 6 of LB had low susceptibilities to AMPs. The number of such strains in patients showed significant positive correlations to the DMFT values (all p = 0.001; r = 0.452; S. mutans p < 0.0001, r = 0.558). CONCLUSION: The occurrence of low susceptible strains to AMPs seems to correlate with the individual caries status. CLINICAL RELEVANCE: The results may lead to new ways to identify individuals with increased caries risk.


Asunto(s)
Antiinfecciosos/farmacología , Caries Dental/microbiología , alfa-Defensinas/farmacología , beta-Defensinas/farmacología , Actinomyces , Adulto , Anciano , Biopelículas/efectos de los fármacos , Índice CPO , Caries Dental/inmunología , Placa Dental/microbiología , Femenino , Humanos , Lactobacillus , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Streptococcus mutans
19.
Biochemistry ; 56(8): 1033-1041, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28026958

RESUMEN

Human α-defensin 6 (HD6) is a host-defense peptide that contributes to intestinal innate immunity and mediates homeostasis at mucosal surfaces by forming noncovalent oligomers that capture bacteria and prevent bacterial invasion of the epithelium. This work illustrates a new role of HD6 in defending the host epithelium against pathogenic microorganisms. We report that HD6 blocks adhesion of Candida albicans to human intestinal epithelial cells and suppresses two C. albicans virulence traits, namely, invasion of human epithelial cells and biofilm formation. Moreover, a comparison of HD6 and a single-point variant F2A that does not form higher-order oligomers demonstrates that the self-assembly properties of HD6 are essential for functional activity against C. albicans. This opportunistic fungal pathogen, which resides in the intestine as a member of the gut microbiota in healthy individuals, can turn virulent and cause a variety of diseases ranging from superficial infections to life-threatening systemic infections. Our results indicate that HD6 may allow C. albicans to persist as a harmless commensal in the gastrointestinal tract. Moreover, HD6 and HD6-inspired molecules may provide a foundation for exploring new antimicrobial strategies that attenuate the virulence traits of C. albicans and other microbial pathogens.


Asunto(s)
Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Agregado de Proteínas , alfa-Defensinas/química , alfa-Defensinas/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida albicans/fisiología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Virulencia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA