Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 30(59): e202402290, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39092488

RESUMO

Organoboron compounds offer a new strategy to design optoelectronic materials with high fluorescence efficiency. In this paper, the organoboron compound B-BNBP with double B←N bridged bipyridine bearing four fluorine atoms as core unit is facilely synthesized and exhibits a narrowband emission spectrum and a high photoluminescence quantum yield (PLQY) of 86.53 % in solution. Its polymorphic crystals were controllable prepared by different solution self-assembly methods. Two microcrystals possess different molecular packing modes, one-dimensional microstrips (1D-MSs) for H-aggregation and two-dimensional microdisks (2D-MDs) for J-aggregation, owing to abundant intermolecular interactions of four fluorine atoms sticking out conjugated plane. Their structure-property relationships were investigated by crystallographic analysis and theoretical calculation. Strong emission spectra with the full width at half maximum (FWHM) of less than 30 nm can also be observed in thin film and 2D-MDs. 1D-MSs possess thermally activated delayed fluorescence (TADF) property and exhibit superior optical waveguide performance with an optical loss of 0.061 dB/µm. This work enriches the diversity of polymorphic microcrystals and further reveals the structure-property relationship in organoboron micro/nano-crystals.

2.
Genomics ; 114(4): 110412, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714828

RESUMO

Tumors are genetically heterogeneous and many mutations are actually present in subclonal populations. The clonal status of mutations is valuable for accurate prognosis, clinical management. The aim of this study was to identify the clonal status of somatic mutations and systematically evaluate their prognostic values across various cancer types. We totally identified 227 clonal and 432 subclonal mutations contributed to prognosis and demonstrated the importance of clonal status in improving mutation-related clinical guidance. We further developed a customized multi-step approach to identify gene-specific prognostic patterns of clonal status at pan-cancer level and found some cancer-specific prognostic patterns. The 'subclonal-dependent risk' subpattern was one of the most common subpatterns, it usually accompanied by high genomic in-stability and high extent of intra-tumor heterogeneity and could be used to improve the accuracy of prognostic analysis. Our results revealed the importance of clonal status, especially subclonal mutation in clinical survival.


Assuntos
Neoplasias , Evolução Clonal , Genômica , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Prognóstico
3.
Cancer Med ; 10(14): 4977-4993, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34076361

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD), as the most common subtype of lung cancer, is the leading cause of cancer deaths in the world. The accumulation of driver gene mutations enables cancer cells to gradually acquire growth advantage. Therefore, it is important to understand the functions and interactions of driver gene mutations in cancer progression. METHODS: We obtained gene mutation data and gene expression profile of 506 LUAD tumors from The Cancer Genome Atlas (TCGA). The subtypes of tumors with driver gene mutations were identified by consensus cluster analysis. RESULTS: We found 21 significantly mutually exclusive pairs consisting of 20 genes among 506 LUAD patients. Because of the increased transcriptomic heterogeneity of mutations, we identified subtypes among tumors with non-silent mutations in driver genes. There were 494 mutually exclusive pairs found among driver gene mutations within different subtypes. Furthermore, we identified functions of mutually exclusive pairs based on the hypothesis of functional redundancy of mutual exclusivity. These mutually exclusive pairs were significantly enriched in nuclear division and humoral immune response, which played crucial roles in cancer initiation and progression. We also found 79 mutually exclusive triples among subtypes of tumors with driver gene mutations, which were key roles in cell motility and cellular chemical homeostasis. In addition, two mutually exclusive triples and one mutually exclusive triple were associated with the overall survival and disease-specific survival of LUAD patients, respectively. CONCLUSIONS: We revealed novel mutual exclusivity and generated a comprehensive functional landscape of driver gene mutations, which could offer a new perspective to understand the mechanisms of cancer development and identify potential biomarkers for LUAD therapy.


Assuntos
Adenocarcinoma de Pulmão/genética , Progressão da Doença , Neoplasias Pulmonares/genética , Mutação/genética , Transcriptoma/genética , Adenocarcinoma de Pulmão/mortalidade , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Heterogeneidade Genética , Fenômenos Genéticos , Humanos , Neoplasias Pulmonares/mortalidade , Mutação/fisiologia
4.
PeerJ ; 9: e12070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527446

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a highly, malignant tumor of the primary central nervous system. Patients diagnosed with this type of tumor have a poor prognosis. Lymphocyte activation plays important roles in the development of cancers and its therapeutic treatments. OBJECTIVE: We sought to identify an efficient lymphocyte activation-associated gene signature that could predict the progression and prognosis of GBM. METHODS: We used univariate Cox proportional hazards regression and stepwise regression algorithm to develop a lymphocyte activation-associated gene signature in the training dataset (TCGA, n = 525). Then, the signature was validated in two datasets, including GSE16011 (n = 150) and GSE13041 (n = 191) using the Kaplan Meier method. Univariate and multivariate Cox proportional hazards regression models were used to adjust for clinicopathological factors. RESULTS: We identified a lymphocyte activation-associated gene signature (TCF3, IGFBP2, TYRO3 and NOD2) in the training dataset and classified the patients into high-risk and low-risk groups with significant differences in overall survival (median survival 15.33 months vs 12.57 months, HR = 1.55, 95% CI [1.28-1.87], log-rank test P < 0.001). This signature showed similar prognostic values in the other two datasets. Further, univariate and multivariate Cox proportional hazards regression models analysis indicated that the signature was an independent prognostic factor for GBM patients. Moreover, we determined that there were differences in lymphocyte activity between the high- and low-risk groups of GBM patients among all datasets. Furthermore, the lymphocyte activation-associated gene signature could significantly predict the survival of patients with certain features, including IDH-wildtype patients and patients undergoing radiotherapy. In addition, the signature may also improve the prognostic power of age. CONCLUSIONS: In summary, our results suggested that the lymphocyte activation-associated gene signature is a promising factor for the survival of patients, which is helpful for the prognosis of GBM patients.

5.
Front Genet ; 11: 673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849766

RESUMO

Breast cancer (BRCA) is the most common cancer and a major cause of death in women. Long non-coding RNAs (lncRNAs) are emerging as key regulators and have been implicated in carcinogenesis and prognosis. In this study, we aimed to develop a lncRNA signature of BRCA patients to improve risk stratification. In the training cohort (GSE21653, n = 232), 17 lncRNAs were identified by univariate Cox proportional hazards regression, which were significantly associated with patients' survival. The least absolute shrinkage and selection operator-penalized Cox proportional hazards regression analysis was used to identify a six-lncRNA signature. According to the median of the signature risk score, patients were divided into a high-risk group and a low-risk group with significant disease-free survival differences in the training cohort. A similar phenomenon was observed in validation cohorts (GSE42568, n = 101; GSE20711, n = 87). The six-lncRNA signature remained as independent prognostic factors after adjusting for clinical factors in these two cohorts. Furthermore, this signature significantly predicted the survival of grade III patients and estrogen receptor-positive patients. Furthermore, in another cohort (GSE19615, n = 115), the low-risk patients that were treated with tamoxifen therapy had longer disease-free survival than those who underwent no therapy. Overall, the six-lncRNA signature can be a potential prognostic tool used to predict disease-free survival of patients and to predict the benefits of tamoxifen treatment in BRCA, which will be helpful in guiding individualized treatments for BRCA patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA