Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Neurophysiol ; 115(3): 1422-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26719084

RESUMO

Standing balance requires multijoint coordination between the ankles and hips. We investigated how humans adapt their multijoint coordination to adjust to various conditions and whether the adaptation differed between healthy young participants and healthy elderly. Balance was disturbed by push/pull rods, applying two continuous and independent force disturbances at the level of the hip and between the shoulder blades. In addition, external force fields were applied, represented by an external stiffness at the hip, either stabilizing or destabilizing the participants' balance. Multivariate closed-loop system-identification techniques were used to describe the neuromuscular control mechanisms by quantifying the corrective joint torques as a response to body sway, represented by frequency response functions (FRFs). Model fits on the FRFs resulted in an estimation of time delays, intrinsic stiffness, reflexive stiffness, and reflexive damping of both the ankle and hip joint. The elderly generated similar corrective joint torques but had reduced body sway compared with the young participants, corresponding to the increased FRF magnitude with age. When a stabilizing or destabilizing external force field was applied at the hip, both young and elderly participants adapted their multijoint coordination by lowering or respectively increasing their neuromuscular control actions around the ankles, expressed in a change of FRF magnitude. However, the elderly adapted less compared with the young participants. Model fits on the FRFs showed that elderly had higher intrinsic and reflexive stiffness of the ankle, together with higher time delays of the hip. Furthermore, the elderly adapted their reflexive stiffness around the ankle joint less compared with young participants. These results imply that elderly were stiffer and were less able to adapt to external force fields.


Assuntos
Adaptação Fisiológica , Envelhecimento/fisiologia , Articulações/fisiologia , Equilíbrio Postural , Postura , Adulto , Idoso , Tornozelo/crescimento & desenvolvimento , Tornozelo/fisiologia , Fenômenos Biomecânicos , Feminino , Humanos , Articulações/crescimento & desenvolvimento , Masculino , Modelos Neurológicos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Reflexo
2.
Gait Posture ; 53: 241-247, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28231556

RESUMO

To maintain upright posture and prevent falling, balance control involves the complex interaction between nervous, muscular and sensory systems, such as sensory reweighting. When balance is impaired, compliant foam mats are used in training methods to improve balance control. However, the effect of the compliance of these foam mats on sensory reweighting remains unclear. In this study, eleven healthy subjects maintained standing balance with their eyes open while continuous support surface (SS) rotations disturbed the proprioception of the ankles. Multisine disturbance torques were applied in 9 trials; three levels of SS compliance, combined with three levels of desired SS rotation amplitude. Two trials were repeated with eyes closed. The corrective ankle torques, in response to the SS rotations, were assessed in frequency response functions (FRF). Lower frequency magnitudes (LFM) were calculated by averaging the FRF magnitudes in a lower frequency window, representative for sensory reweighting. Results showed that increasing the SS rotation amplitude leads to a decrease in LFM. In addition there was an interaction effect; the decrease in LFM by increasing the SS rotation amplitude was less when the SS was more compliant. Trials with eyes closed had a larger LFM compared to trials with eyes open. We can conclude that when balance control is trained using foam mats, two different effects should be kept in mind. An increase in SS compliance has a known effect causing larger SS rotations and therefore greater down weighting of proprioceptive information. However, SS compliance itself influences the sensitivity of sensory reweighting to changes in SS rotation amplitude with relatively less reweighting occurring on more compliant surfaces as SS amplitude changes.


Assuntos
Marcha , Equilíbrio Postural , Propriocepção/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Valores de Referência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA