Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
FASEB J ; 30(8): 2684-97, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27103577

RESUMO

The role of peroxisome proliferator-activated receptor α (PPARα)-mediated metabolic remodeling in cardiac adaptation to hypoxia has yet to be defined. Here, mice were housed in hypoxia for 3 wk before in vivo contractile function was measured using cine MRI. In isolated, perfused hearts, energetics were measured using (31)P magnetic resonance spectroscopy (MRS), and glycolysis and fatty acid oxidation were measured using [(3)H] labeling. Compared with a normoxic, chow-fed control mouse heart, hypoxia decreased PPARα expression, fatty acid oxidation, and mitochondrial uncoupling protein 3 (UCP3) levels, while increasing glycolysis, all of which served to maintain normal ATP concentrations ([ATP]) and thereby, ejection fractions. A high-fat diet increased cardiac PPARα expression, fatty acid oxidation, and UCP3 levels with decreased glycolysis. Hypoxia was unable to alter the high PPARα expression or reverse the metabolic changes caused by the high-fat diet, with the result that [ATP] and contractile function decreased significantly. The adaptive metabolic changes caused by hypoxia in control mouse hearts were found to have occurred already in PPARα-deficient (PPARα(-/-)) mouse hearts and sustained function in hypoxia despite an inability for further metabolic remodeling. We conclude that decreased cardiac PPARα expression is essential for adaptive metabolic remodeling in hypoxia, but is prevented by dietary fat.-Cole, M. A., Abd Jamil, A. H., Heather, L. C., Murray, A. J., Sutton, E. R., Slingo, M., Sebag-Montefiore, L., Tan, S. C., Aksentijevic, D., Gildea, O. S., Stuckey, D. J., Yeoh, K. K., Carr, C. A., Evans, R. D., Aasum, E., Schofield, C. J., Ratcliffe, P. J., Neubauer, S., Robbins, P. A., Clarke, K. On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury.


Assuntos
Adaptação Fisiológica , Gorduras na Dieta/efeitos adversos , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Consumo de Oxigênio/fisiologia , PPAR alfa/metabolismo , Ração Animal/análise , Animais , Linhagem Celular , Gorduras na Dieta/administração & dosagem , Regulação da Expressão Gênica/fisiologia , Coração/fisiologia , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , PPAR alfa/genética
2.
Basic Res Cardiol ; 107(3): 268, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22538979

RESUMO

Chronic hypoxia decreases cardiomyocyte respiration, yet the mitochondrial mechanisms remain largely unknown. We investigated the mitochondrial metabolic pathways and enzymes that were decreased following in vivo hypoxia, and questioned whether hypoxic adaptation was protective for the mitochondria. Wistar rats were housed in hypoxia (7 days acclimatisation and 14 days at 11% oxygen), while control rats were housed in normoxia. Chronic exposure to physiological hypoxia increased haematocrit and cardiac vascular endothelial growth factor, in the absence of weight loss and changes in cardiac mass. In both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria isolated from hypoxic hearts, state 3 respiration rates with fatty acid were decreased by 17-18%, and with pyruvate were decreased by 29-15%, respectively. State 3 respiration rates with electron transport chain (ETC) substrates were decreased only in hypoxic SSM, not in hypoxic IFM. SSM from hypoxic hearts had decreased activities of ETC complexes I, II and IV, which were associated with decreased reactive oxygen species generation and protection against mitochondrial permeability transition pore (MPTP) opening. In contrast, IFM from hypoxic hearts had decreased activity of the Krebs cycle enzyme, aconitase, which did not modify ROS production or MPTP opening. In conclusion, cardiac mitochondrial respiration was decreased following chronic hypoxia, associated with downregulation of different pathways in the two mitochondrial populations, determined by their subcellular location. Hypoxic adaptation was not deleterious for the mitochondria, in fact, SSM acquired increased protection against oxidative damage under the oxygen-limited conditions.


Assuntos
Metabolismo Energético , Hipóxia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Aconitato Hidratase/metabolismo , Adaptação Fisiológica , Animais , Respiração Celular , Doença Crônica , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos/metabolismo , Hematócrito , Masculino , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo , Ácido Pirúvico , Ratos , Ratos Wistar , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1865(4): 831-843, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30266651

RESUMO

Cardiovascular disease (CVD) accounts for the largest number of deaths worldwide, necessitating the development of novel treatments and prevention strategies. Given the huge energy demands placed on the heart, it is not surprising that changes in energy metabolism play a key role in the development of cardiac dysfunction in CVD. A reduction in oxygen delivery to the heart, hypoxia, is sensed and responded to by the hypoxia-inducible factor (HIF) and its family of proteins, by regulating the oxygen-dependent signalling cascade and subsequent response. Hypoxia is one of the main drivers of metabolic change in ischaemic disease and myocardial infarction, and we therefore suggest that HIF may be an attractive therapeutic target. In this review, we assess cardiac energy metabolism in health and disease, and how these can be regulated by HIF-1α activation. We then present an overview of research in the field of hypoxia-mimetic drugs recently developed in other treatment fields, which provide insight into the potential of systemic HIF-1α activation therapy for treating the heart.


Assuntos
Doenças Cardiovasculares/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Animais , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Miocárdio/metabolismo , Transdução de Sinais , Regulação para Cima
4.
J Cardiovasc Pharmacol Ther ; 19(6): 574-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24607765

RESUMO

Hypoxia is a consequence of cardiac disease and downregulates mitochondrial metabolism, yet the molecular mechanisms through which this occurs in the heart are incompletely characterized. Therefore, we aimed to use a contracting HL-1 cardiomyocyte model to investigate the effects of hypoxia on mitochondrial metabolism. Cells were exposed to hypoxia (2% O2) for 6, 12, 24, and 48 hours to characterize the metabolic response. Cells were subsequently treated with the hypoxia inducible factor (HIF)-activating compound, dimethyloxalylglycine (DMOG), to determine whether hypoxia-induced mitochondrial changes were HIF dependent or independent, and to assess the suitability of this cultured cardiac cell line for cardiovascular pharmacological studies. Hypoxic cells had increased glycolysis after 24 hours, with glucose transporter 1 and lactate levels increased 5-fold and 15-fold, respectively. After 24 hours of hypoxia, mitochondrial networks were more fragmented but there was no change in citrate synthase activity, indicating that mitochondrial content was unchanged. Cellular oxygen consumption was 30% lower, accompanied by decreases in the enzymatic activities of electron transport chain (ETC) complexes I and IV, and aconitase by 81%, 96%, and 72%, relative to controls. Pharmacological HIF activation with DMOG decreased cellular oxygen consumption by 43%, coincident with decreases in the activities of aconitase and complex I by 26% and 30%, indicating that these adaptations were HIF mediated. In contrast, the hypoxia-mediated decrease in complex IV activity was not replicated by DMOG treatment, suggesting HIF-independent regulation of this complex. In conclusion, 24 hours of hypoxia increased anaerobic glycolysis and decreased mitochondrial respiration, which was associated with changes in ETC and tricarboxylic acid cycle enzyme activities in contracting HL-1 cells. Pharmacological HIF activation in this cardiac cell line allowed both HIF-dependent and independent mitochondrial metabolic changes to be identified.


Assuntos
Aminoácidos Dicarboxílicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Aconitato Hidratase/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Transportador de Glucose Tipo 1/agonistas , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ácido Láctico/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA