Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cardiovasc Diabetol ; 8: 16, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19317897

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) contributes to cardiac failure in diabetic patients. It is characterized by excessive lipids accumulation, with increased triacylglycerol (TAG) stores, and fibrosis in left ventricle (LV). The mechanisms responsible are incompletely known and no specific treatment is presently defined. We evaluated the possible usefulness of two molecules promoting lipid oxidation, fenofibrate and metformin, in an experimental model of DCM, the Zucker diabetic rat (ZDF). METHODS: ZDF and controls (C) rats were studied at 7, 14 and 21 weeks. After an initial study at 7 weeks, ZDF rats received no treatment, metformin or fenofibrate until final studies (at 14 or 21 weeks). C rats received no treatment. Each study comprised measurements of metabolic parameters (plasma glucose, TAG, insulin levels) and sampling of heart for histology and measurements of TAG content and relevant mRNA concentration. RESULTS: ZDF rats were insulin-resistant at 7 weeks, type 2 diabetic at 14 weeks and diabetic with insulin deficiency at 21 weeks. Their plasma TAG levels were increased. ZDF rats had at 7 weeks an increased LV TAG content with some fibrosis. LV TAG content increased in untreated ZDF rats at 14 and 21 weeks and was always higher than in C. Fibrosis increased also moderately in untreated ZDF rats. Metformin and fenofibrate decreased plasma TAG concentrations. LV TAG content was decreased by metformin (14 and 21 weeks) and by fenofibrate (14 weeks). Fibrosis was reduced by fenofibrate only and was increased by metformin. Among the mRNA measured, fenofibrate increased Acyl-CoA Oxidase mRNA level, metformin decreased Acyl-CoA Synthase and increased AdipoR1 and pro-inflammatory mRNA levels. CONCLUSION: Fenofibrate had favourable actions on DCM. Metformin had beneficial effect on TAG content but not on fibrosis. PPARalpha agonists could be useful for the prevention and treatment of DCM.


Assuntos
Cardiomiopatias/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Fenofibrato/uso terapêutico , Metformina/uso terapêutico , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Cardiomiopatias/sangue , Cardiomiopatias/complicações , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Masculino , Ratos , Ratos Zucker
2.
Metabolism ; 57(7): 946-53, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18555836

RESUMO

The insulin-sensitizing adipokine, adiponectin, acts through 2 receptors, AdipoR1 and AdipoR2. A decreased expression of these receptors could contribute to insulin resistance and diabetes. We determined if the expression of adiponectin receptors is decreased in an experimental model, the Zucker diabetic rat (ZDF), and if a peroxisome proliferator-activated receptor alpha agonist, fenofibrate, and metformin could increase these expressions. The ZDF and control (L) rats were studied at 7, 14, and 21 weeks. After initial study at 7 weeks, ZDF received no treatment (n = 10), metformin (n = 10), or fenofibrate (n = 10) until final studies at 14 or 21 weeks. The L rats received no treatment. AdipoR1 and R2 expressions were measured in liver, muscle, and white adipose tissue (WAT). As expected, ZDF rats were insulin resistant at 7 weeks, had type 2 diabetes mellitus at 14 weeks, and had diabetes with insulin deficiency at 21 weeks. Compared with L rats, AdipoRs messenger RNA was decreased only in the WAT (P < .05) of 7-week-old ZDF rats, but was unchanged in muscle and increased in liver. Metformin and fenofibrate decreased plasma triacylglycerols (P < .01) as expected. The only effect of fenofibrate on AdipoRs was a moderate increase (P < .01) of both receptors' messenger RNA in liver. Metformin increased AdipoR1 and R2 expression in muscle (P < .01) and AdipoR1 (P < .01) in WAT. These results do not support an important role for decreased AdipoRs expression in the development of insulin resistance and diabetes. Parts of the actions of fenofibrate and of metformin could be mediated by a stimulation of the expression of these receptors in liver and in insulin-sensitive, glucose-utilizing tissues (muscle, WAT), respectively.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Fenofibrato/farmacologia , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Metformina/farmacologia , Receptores de Adiponectina/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/genética , Ingestão de Alimentos/efeitos dos fármacos , Ácidos Graxos não Esterificados/sangue , Insulina/sangue , Masculino , PPAR alfa/agonistas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Zucker , Triglicerídeos/sangue
3.
Obesity (Silver Spring) ; 17(7): 1381-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19553925

RESUMO

No specific treatment for nonalcoholic hepatic fatty liver disease has been defined. We followed the spontaneous evolution of liver steatosis and tested the therapeutic usefulness of metformin and fenofibrate in a model of steatosis, the Zucker diabetic fatty (ZDF) rat. ZDF and control rats were studied at 7, 14, and 21 weeks. After initial study at 7 weeks, ZDF rats received no treatment, metformin or fenofibrate until studies at 14 or 21 weeks. ZDF rats were obese, hypertriglyceridemic, insulin resistant at 7 weeks, type 2 diabetic at 14, diabetic with insulin deficiency at 21. They had steatosis at 7 weeks with increased hepatic expression and activity of lipogenesis. Steatosis was unchanged at 14 and 21 weeks despite lower expression and activity of lipogenesis. Metformin and fenofibrate did not modify energy intake or expenditure or the evolution of diabetes. Both compounds decreased plasma triacylglycerol (TAG) concentrations. Hepatic TAG content was reduced by fenofibrate at 14 and 21 weeks but only at 21 weeks by metformin. Metformin had no significant effects on the expression in liver of genes of fatty acids metabolism. The beneficial effect of fenofibrate occurred despite increased expression of genes involved in the uptake and activation of fatty acids. Acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase I (CPTI) mRNA levels were increased by fenofibrate showing evidence of increased lipid oxidation. To conclude, metformin had only moderate effects on liver steatosis. The effects of fenofibrate was more marked but remained mild.


Assuntos
Diabetes Mellitus Experimental/complicações , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fenofibrato/uso terapêutico , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/uso terapêutico , Metformina/uso terapêutico , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fenofibrato/farmacologia , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Insulina/sangue , Masculino , Metformina/farmacologia , PPAR alfa/agonistas , RNA Mensageiro/metabolismo , Ratos , Ratos Zucker , Triglicerídeos/metabolismo
4.
Nat Cell Biol ; 11(8): 988-93, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19597486

RESUMO

Telomeres protect chromosome ends from fusion and degradation. In the absence of a specific telomere elongation mechanism, their DNA shortens progressively with every round of replication, leading to replicative senescence. Here, we show that telomerase-deficient cells bearing a single, very short telomere senesce earlier, demonstrating that the length of the shortest telomere is a major determinant of the onset of senescence. We further show that Mec1p-ATR specifically recognizes the single, very short telomere causing the accelerated senescence. Strikingly, before entering senescence, cells divide for several generations despite complete erosion of their shortened telomeres. This pre-senescence growth requires RAD52 (radiation sensitive) and MMS1 (methyl methane sulfonate sensitive), and there is no evidence for major inter-telomeric recombination. We propose that, in the absence of telomerase, a very short telomere is first maintained in a pre-signalling state by a RAD52-MMS1-dependent pathway and then switches to a signalling state leading to senescence through a Mec1p-dependent checkpoint.


Assuntos
Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Telômero/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo
5.
Nat Cell Biol ; 11(8): 980-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19597487

RESUMO

The ends of linear eukaryotic chromosomes are protected by telomeres, which serve to ensure proper chromosome replication and to prevent spurious recombination at chromosome ends. In this study, we show by single cell analysis that in the absence of telomerase, a single short telomere is sufficient to induce the recruitment of checkpoint and recombination proteins. Notably, a DNA damage response at eroded telomeres starts many generations before senescence and is characterized by the recruitment of Cdc13 (cell division cycle 13), replication protein A, DNA damage checkpoint proteins and the DNA repair protein Rad52 into a single focus. Moreover, we show that eroded telomeres, although remaining at the nuclear periphery, move to the nuclear pore complex. Our results link the DNA damage response at eroded telomeres to changes in subnuclear localization and suggest the existence of collapsed replication forks at eroded telomeres.


Assuntos
Dano ao DNA , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Imunoprecipitação da Cromatina , Reparo do DNA , DNA de Cadeia Simples/genética , Fase G2 , Haploidia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
6.
Am J Physiol Endocrinol Metab ; 292(5): E1340-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17227960

RESUMO

H(2)O administration has recently been proposed as a simple and convenient method to measure protein synthesis rates. (2)H(2)O administration results in deuterium labeling of free amino acids such as alanine, and incorporation into proteins of labeled alanine can then be used to measure protein synthesis rates. We examined first whether during (2)H(2)O administration plasma free alanine enrichment is a correct estimate of the enrichment in the tissue amino acid pools used for protein synthesis. We found that, after (2)H(2)O administration, deuterium labeling in plasma free alanine equilibrated rapidly with body water, and stable enrichment values were obtained within 20 min. Importantly, oral administration of (2)H(2)O induced no difference of labeling between portal and peripheral circulation except for the initial 10 min after a loading dose. The kinetics of free alanine labeling were comparable in various tissues (liver, skeletal muscle, heart) and in plasma with identical plateau values. We show next that increased glycolytic rate or absorption of unlabeled amino acids from ingested meals do not modify alanine labeling. Calculated synthesis rates of mixed proteins were much higher (20- to 70-fold) in plasma and liver than in muscle and heart. Last, comparable replacement rates of apoB100-VLDL were obtained in humans by using the kinetics of incorporation into apoB100 of infused labeled leucine or of alanine labeled by (2)H(2)O administration. All of these results support (2)H(2)O as a safe, reliable, useful, and convenient tracer for studies of protein synthesis, including proteins with slow turnover rate.


Assuntos
Alanina/metabolismo , Apolipoproteína B-100/metabolismo , Óxido de Deutério/metabolismo , Receptores de LDL/metabolismo , Adulto , Alanina/química , Animais , Apolipoproteína B-100/química , Óxido de Deutério/química , Feminino , Humanos , Cinética , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Biossíntese Peptídica , Ratos , Ratos Wistar , Receptores de LDL/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA