Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
BMC Plant Biol ; 22(1): 287, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698026

RESUMO

BACKGROUND: To our knowledge, the role of exogenous fluoride (F-) on aluminum (Al)-stress mitigation in plants has not been investigated yet. In this experiment, barley (Hordeum vulgaris) seedlings were exposed to excessive Al3+ concentrations (aluminum chloride, 0.5, 1.0, 2.0, 3.0, and 4.0 mM) with and without fluoride (0.025% sodium fluoride) to explore the possible roles of fluoride on the alleviation of Al-toxicity. RESULTS: Overall, Al-stress caused inhibition of growth and the production of photosynthetic pigments. Principal component analysis showed that the growth inhibitory effects were driven by increased oxidative stress and the interruption of water balance in barley under Al-stress. Fluoride priming, on the other hand, enhanced growth traits, chlorophyll a and b content, as well as invigorated the protection against oxidative damage by enhancing overall antioxidant capacity. Fluoride also improved osmotic balance by protecting the plasma membrane. Fluoride reduced endogenous Al3+ content, restored Al-induced inhibition of glutathione-S-transferase, and increased  the contents of phytochelatins and metallothioneins, suggesting that fluoride reduced Al3+ uptake and improved chelation of Al3+. CONCLUSIONS: Aluminum chloride-induced harmful effects are abridged by sodium fluoride on barely via enhancing antioxidative responses, the chelation mechanism causing reduction of Al uptake and accumulation of barely tissues. Advanced investigations are necessary to uncover the putative mechanisms underpinning fluoride-induced Al-stress tolerance in barley and other economically significant crops, where our results might serve as a solid reference.


Assuntos
Hordeum , Alumínio/toxicidade , Cloreto de Alumínio/farmacologia , Antioxidantes/metabolismo , Clorofila A , Fluoretos/toxicidade , Hordeum/metabolismo , Estresse Oxidativo , Plântula/metabolismo , Fluoreto de Sódio/farmacologia
2.
Ecotoxicol Environ Saf ; 213: 112051, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33601169

RESUMO

Multi-walled carbon nanotubes (MWCNTs) have recently attracted huge attention to their impacts on the environment and plants. Therefore, this experiment was conducted to investigate the responses of lead (Pb) and cadmium (Cd) exposed pot marigold plants to various levels of MWCNT. Calendula officinalis (L.) seedlings were cultivated in Pb and Cd-polluted soils with exposure to 0, 50, 100, 250, 500 and 1000 mg L-1 of MWCNT. The results demonstrated that foliar-applied MWCNT up to 250 mg L-1 not only alleviated Pb and Cd-induced toxicity by reducing oxidative damage and boosting both enzymatic and non-enzymatic antioxidant defense system but also promoted the phytoremediation property of pot marigold plants by enhancing the accumulation of both Pb and Cd from the soil. Interestingly, oxidative damage exacerbation and both Pb and Cd accumulation reduction were noticed in pot marigold seedlings exposed to 500 and 1000 mg L-1 MWCNTs. The findings of this study clearly showed that the use of appropriate concentrations of MWCNTs in increasing the phytoremediation properties of pot marigold was justified, while the use of high concentrations is toxic to the plant and intensifies the toxic effects of heavy metals (HMs) on plant physiology. This study provides a novel method to facilitate the phytoremediation of HMs polluted soils using MWCNT as well as explores the potential risks of these nanoparticles to the plants.


Assuntos
Calendula/metabolismo , Metais Pesados/toxicidade , Nanotubos de Carbono , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Biodegradação Ambiental , Cádmio/toxicidade , Glutationa , Chumbo/toxicidade , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Plântula/efeitos dos fármacos , Solo , Poluentes do Solo/análise
3.
Ecotoxicol Environ Saf ; 214: 112072, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33691243

RESUMO

The Green Revolution faced a great cost to meet ever-increasing demands for food, where indiscriminate use of agrochemicals resulted in non-friendly habitats. Therefore, the development of a sustainable approach to better crop production of onion seeds (Allium cepa L.) is very crucial. It is time to use organic waste as a replacement for agrochemicals by using arbuscular mycorrhizal fungi (AMF) and Trichoderma. Fish waste as representative of food waste acts as a leading cause of contamination of the environment. The interaction of AMF and Trichoderma viride on biomass, total soluble protein, mycorrhizal colonization, amino acids, phosphatases and phosphorus and nitrogen contents of onion plants grown in fish waste amended soil was studied. Fish waste has caused a slight increase in onions biomass, total free amino acids, and soluble protein content while with AMF and T. viride dual inoculation more increments were recorded; such increases were related to an increase in mycorrhizal colonization. T. viride application significantly increased the mycorrhizal colonization levels, but these were significantly reduced with waste addition. Analysis of amino acids in plants showed that their concentrations had changed as a result of waste addition combined with AMF and/or T. viride. The effectiveness of fish waste combined with low cost and health/environmental safety leads to a prediction that the introduction of fish waste coupled with fungi will become a more popular feature of agriculture in the future.


Assuntos
Micorrizas/fisiologia , Cebolas/fisiologia , Trichoderma/fisiologia , Agricultura , Aminoácidos/metabolismo , Biomassa , Alimentos , Fungos/metabolismo , Hypocreales , Micorrizas/metabolismo , Nitrogênio/metabolismo , Cebolas/química , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Eliminação de Resíduos , Solo , Trichoderma/metabolismo
4.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946396

RESUMO

The increasing culinary use of onion (Alium cepa) raises pressure on the current production rate, demanding sustainable approaches for increasing its productivity worldwide. Here, we aimed to investigate the beneficial effects of licorice (Glycyrrhiza glabra) root extract (LRE) in improving growth, yield, nutritional status, and antioxidant properties of two high-yielding onion cultivars, Shandaweel and Giza 20, growing under field conditions in two consecutive years. Our results revealed that pretreatments of both onion cultivars with LRE exhibited improved growth indices (plant height and number of leaves) and yield-related features (bulb length, bulb diameter, and bulb weight) in comparison with the corresponding LRE-devoid control plants. Pretreatments with LRE also improved the nutritional and antioxidant properties of bulbs of both cultivars, which was linked to improved mineral (e.g., K+ and Ca2+) acquisition, and heightened activities of enzymatic antioxidants (e.g., superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase, and glutathione S-transferase) and increased levels of non-enzymatic antioxidants (e.g., ascorbic acid, reduced glutathione, phenolics, and flavonoids). LRE also elevated the contents of proline, total free amino acids, total soluble carbohydrates, and water-soluble proteins in both onion bulbs. In general, both cultivars displayed positive responses to LRE pretreatments; however, the Shandaweel cultivar performed better than the Giza 20 cultivar in terms of yield and, to some extent, bulb quality. Collectively, our findings suggest that the application of LRE as biostimulant might be an effective strategy to enhance bulb quality and ultimately the productivity of onion cultivars under field conditions.


Assuntos
Antioxidantes/farmacologia , Produção Agrícola , Glycyrrhiza/química , Cebolas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Aminoácidos/metabolismo , Antioxidantes/química , Biomarcadores , Metabolismo dos Carboidratos , Cebolas/fisiologia , Oxirredução , Fotossíntese , Pigmentos Biológicos/biossíntese , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo
5.
Plants (Basel) ; 13(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202358

RESUMO

In this study, canola (Brassica napus L.) seedlings were treated with individual and combined salinity and lithium (Li) stress, with and without acetic acid (AA) or nitric acid (NO), to investigate their possible roles against these stresses. Salinity intensified Li-induced damage, and the principal component analysis revealed that this was primarily driven by increased oxidative stress, deregulation of sodium and potassium accumulation, and an imbalance in tissue water content. However, pretreatment with AA and NO prompted growth, re-established sodium and potassium homeostasis, and enhanced the defense system against oxidative and nitrosative damage by triggering the antioxidant capacity. Combined stress negatively impacted phenylalanine ammonia lyase activity, affecting flavonoids, carotenoids, and anthocyanin levels, which were then restored in canola plants primed with AA and NO. Additionally, AA and NO helped to maintain osmotic balance by increasing trehalose and proline levels and upregulating signaling molecules such as hydrogen sulfide, γ-aminobutyric acid, and salicylic acid. Both AA and NO improved Li detoxification by increasing phytochelatins and metallothioneins, and reducing glutathione contents. Comparatively, AA exerted more effective protection against the detrimental effects of combined stress than NO. Our findings offer novel perspectives on the impacts of combining salt and Li stress.

6.
Plants (Basel) ; 11(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35336628

RESUMO

Zizyphus spina-christi L. has antimicrobial properties because of the presence of biologically active compounds. Alternaria is an opportunistic pathogen that causes leaf spots, rots, and blights on a variety of plant parts. This study aimed to reduce the usage of synthetically derived fungicides. Identification of the bioactive components present in leaves and fruits methanolic extracts of Z. spina-christi was performed using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The efficacy of the two methanol extracts was tested against (a) in vitro fungal growth and (b) pathogenicity control on non-wounded and wounded tomato fruits. The results revealed that gallic acid and ellagic acid were the major components in leaves extract while quercetin was the major component in fruits extract. In addition, Phenol, 2,5-bis(1,1-dimethylethyl) (40.24%) and Decane, 2-methyl-(18.53%) were the most abundant components in the leaf extract, and the presence of D-mannonic acid, 2,3,5,6-tetrakis-o-(trimethylsilyl), and γ-lactone (22.72%) were major components in fruits extract. The methanolic extracts of Z. spina-christi leaves and fruits demonstrated significant antifungal activity against the growth of Alternaria alternata, A. citri, and A. radicina with variable inhibition percentages at different concentrations. Pathogenicity was increased when the skin was injured, as expected. Both extracts reduced the percentage of infected fruits.

7.
Plants (Basel) ; 11(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297804

RESUMO

Trehalose regulates key physio-biochemical parameters, antioxidants, and the yield of plants exposed to a dry environment. A study was conducted to assess the regulatory roles of exogenously applied trehalose in drought-stressed sunflower plants. Two cultivars of sunflowers (Hysun 33 and FH 598) were subjected to drought stress (60% field capacity) and varying (0, 10, 20, and 30 mM) concentrations of trehalose. The data indicated that water stress significantly reduced the shoot length, root length, total soluble proteins, shoot Ca2+, root P, relative water content (RWC), and achene yield per plant. The foliar spray of trehalose was effective at improving plant growth, RWC, total soluble proteins, total soluble sugars, the activities of enzymatic antioxidants, Ca2+ (shoot and root), root K+, and the yield attributes. Exogenously supplemented trehalose considerably suppressed relative membrane permeability (RMP), but did not alter ascorbic acid, malondialdehyde, the total phenolics, shoot K+, or P (shoot and root) in both sunflower cultivars. The cv. Hysun 33 had better ascorbic acid, total soluble sugars, non-reducing sugars, shoot P, and root P than the other cultivar, whereas cv. FH 598 was relatively better at regulating RMP, malondialdehyde, peroxidase, and root Ca2+ concentration. Overall, exogenously supplemented trehalose, particularly at 10 mM, was effective at improving the physiochemical parameters and yield of sunflower plants under stress conditions. Therefore, a better performance of sunflower cv. Hysun 33 under drought stress can be suggested as a trehalose-induced enhancement of yield and oxidative defense potential.

8.
Front Plant Sci ; 13: 1004173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340332

RESUMO

Background: Cadmium (Cd) is a highly toxic heavy metal. Its emission is suspected to be further increased due to the dramatic application of ash to agricultural soils and newly reclaimed ones. Thereby, Cd stress encountered by plants will exacerbate. Acute and chronic exposure to Cd can upset plant growth and development and ultimately causes plant death. Microorganisms as agriculturally important biofertilizers have constantly been arising as eco-friendly practices owing to their ability to built-in durability and adaptability mechanisms of plants. However, applying microbes as a biofertilizer agent necessitates the elucidation of the different mechanisms of microbe protection and stabilization of plants against toxic elements in the soil. A greenhouse experiment was performed using Trichoderma harzianum and plant growth-promoting (PGP) bacteria (Azotobacter chroococcum and Bacillus subtilis) individually and integrally to differentiate their potentiality in underpinning various resilience mechanisms versus various Cd levels (0, 50, 100, and 150 mg/kg of soil). Microorganisms were analyzed for Cd tolerance and biosorption capacity, indoleacetic acid production, and phosphate and potassium solubilization in vitro. Plant growth parameters, water relations, physiological and biochemical analysis, stress markers and membrane damage traits, and nutritional composition were estimated. Results: Unequivocal inversion from a state of downregulation to upregulation was distinct under microbial inoculations. Inoculating soil with T. harzianum and PGPB markedly enhanced the plant parameters under Cd stress (150 mg/kg) compared with control plants by 4.9% and 13.9%, 5.6% and 11.1%, 55.6% and 5.7%, and 9.1% and 4.6% for plant fresh weight, dry weight, net assimilation rate, and transpiration rate, respectively; by 2.3% and 34.9%, 26.3% and 69.0%, 26.3% and 232.4%, 135.3% and 446.2%, 500% and 95.6%, and 60% and 300% for some metabolites such as starch, amino acids, phenolics, flavonoids, anthocyanin, and proline, respectively; by 134.0% and 604.6% for antioxidants including reduced glutathione; and by 64.8% and 91.2%, 21.9% and 72.7%, and 76.7% and 166.7% for enzymes activity including ascorbate peroxidase, glutathione peroxidase, and phenylalanine ammonia-lyase, respectively. Whereas a hampering effect mediated by PGP bacterial inoculation was registered on levels of superoxide anion, hydroxyl radical, electrolyte leakage, and polyphenol oxidase activity, with a decrease of 0.53%, 14.12%, 2.70%, and 5.70%, respectively, under a highest Cd level (150 mg/kg) compared with control plants. The available soil and plant Cd concentrations were decreased by 11.5% and 47.5%, and 3.8% and 45.0% with T. harzianum and PGP bacterial inoculation, respectively, compared with non-inoculated Cd-stressed plants. Whereas, non-significant alternation in antioxidant capacity of sunflower mediated by T. harzianum action even with elevated soil Cd concentrations indicates stable oxidative status. The uptake of nutrients, viz., K, Ca, Mg, Fe, nitrate, and phosphorus, was interestingly increased (34.0, 4.4, 3.3, 9.2, 30.0, and 1.0 mg/g dry weight, respectively) owing to the synergic inoculation in the presence of 150 mg of Cd/kg. Conclusions: However, strategies of microbe-induced resilience are largely exclusive and divergent. Biofertilizing potential of T. harzianum showed that, owing to its Cd biosorption capability, a resilience strategy was induced via reducing Cd bioavailability to be in the range that turned its effect from toxicity to essentiality posing well-known low-dose stimulation phenomena (hormetic effect), whereas using Azotobacter chroococcum and Bacillus subtilis, owing to their PGP traits, manifested a resilience strategy by neutralizing the potential side effects of Cd toxicity. The synergistic use of fungi and bacteria proved the highest efficiency in imparting sunflower adaptability under Cd stress.

9.
Life (Basel) ; 12(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36294914

RESUMO

Wheat is the third most producing crop in China after maize and rice. In order to enhance the nitrogen use efficiency (NUE) and grain yield of winter wheat, a two-year field experiment was conducted to investigate the effect of different nitrogen ratios and doses at various development stages of winter wheat (Triticum aestivum L.). A total of five N doses (0, N75, N150, N225, and N300 kg ha-1) as main plots and two N ratios were applied in split doses (50%:50% and 60%:40%, referring to 50% at sowing time and 50% at jointing stage, 50% at sowing time + 50% at flowering stage, 50% at sowing time + 50% at grain filling stage, and 60% + 40% N ratio applied as a 60% at sowing time and 40% at jointing stage, 60% at sowing time and 40% at flowering stage, and 60% at sowing time and 40% at grain filling stage in subplots). The results of this study revealed that a nitrogen dose of 225 kg ha-1 significantly augmented the plant height by 27% and above ground biomass (ABG) by 24% at the grain filling stage, and the leaf area was enhanced by 149% at the flowering stage under 60 + 40% ratios. Furthermore, the N225 kg ha-1 significantly prompted the photosynthetic rate by 47% at the jointing and flowering stages followed by grain filling stage compared to the control. The correlation analysis exhibited the positive relationship between nitrogen uptake and nitrogen content, chlorophyll, and dry biomass, revealing that NUE enhanced and ultimately increased the winter wheat yield. In conclusion, our results depicted that optimizing the nitrogen dose (N225 kg/ha-1) with a 60% + 40% ratio at jointing stage increased the grain yield and nitrogen utilization rate.

10.
Plants (Basel) ; 11(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365394

RESUMO

Chamomile (Matricariarecutita L.) is one of the most important medicinal plants with various applications. The flowers and flower heads are the main organs inthe production of essential oil. The essential improvement goals of chamomile are considered to be high flower yield and oil content, as well asthe suitability for mechanical harvesting. The present study aimed to improve the flower yield, oil content and mechanical harvestability of German chamomile via chemical and physical mutagens. Three German chamomile populations (Fayum, Benysuif and Menia) were irradiated with 100, 200, 300 and 400 Gray doses of gamma rays, as well as chemically mutagenized using 0.001, 0.002 and 0.003 mol/mL of sodium azide for 4 h. The two mutagens produced a wide range of changes in the flowers' shape and size. At M3 generation, 18 mutants (11 from gamma irradiation and 7 from sodium azide mutagenization) were selected and morphologically characterized. Five out of eighteen mutants were selected for morphological and chemical characterization for oil content, oil composition and oil quality in M4 generation. Two promising mutants, F/LF5-2-1 and B/HNOF 8-4-2, were selected based on their performance in most studied traits during three generations, as well as the high percentage of cut efficiency and a homogenous flower horizon, which qualify them as suitable candidates for mechanical harvesting. The two mutants are late flowering elite mutants; the F/LF5-2-1 mutant possessed the highest oil content (1.77%) and number of flowers/plant (1595), while the second promising B/HNOF 8-4-2 mutant hada high oil content (1.29%) and chamazulene percentage (13.98%) compared to control plants. These results suggest that the B/HNOF 8-4-2 and F/LF5-2-1 mutants could be integrated as potential parents into breeding programs for a high number of flowers, high oil content, oil composition and oil color traits for German chamomile improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA