Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 619(7970): 624-631, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344596

RESUMO

Loss of the Y chromosome (LOY) is observed in multiple cancer types, including 10-40% of bladder cancers1-6, but its clinical and biological significance is unknown. Here, using genomic and transcriptomic studies, we report that LOY correlates with poor prognoses in patients with bladder cancer. We performed in-depth studies of naturally occurring LOY mutant bladder cancer cells as well as those with targeted deletion of Y chromosome by CRISPR-Cas9. Y-positive (Y+) and Y-negative (Y-) tumours grew similarly in vitro, whereas Y- tumours were more aggressive than Y+ tumours in immune-competent hosts in a T cell-dependent manner. High-dimensional flow cytometric analyses demonstrated that Y- tumours promote striking dysfunction or exhaustion of CD8+ T cells in the tumour microenvironment. These findings were validated using single-nuclei RNA sequencing and spatial proteomic evaluation of human bladder cancers. Of note, compared with Y+ tumours, Y- tumours exhibited an increased response to anti-PD-1 immune checkpoint blockade therapy in both mice and patients with cancer. Together, these results demonstrate that cancer cells with LOY mutations alter T cell function, promoting T cell exhaustion and sensitizing them to PD-1-targeted immunotherapy. This work provides insights into the basic biology of LOY mutation and potential biomarkers for improving cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Deleção Cromossômica , Cromossomos Humanos Y , Evasão Tumoral , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Cromossomos Humanos Y/genética , Proteômica , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Perfilação da Expressão Gênica , Genômica , Prognóstico , Sistemas CRISPR-Cas , Edição de Genes , Técnicas In Vitro , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Citometria de Fluxo , Imunoterapia
3.
Breast Cancer Res ; 16(4): 418, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25116921

RESUMO

INTRODUCTION: Many Luminal breast cancers are heterogeneous, containing substantial numbers of estrogen (ER) and progesterone (PR) receptor-negative cells among the ER+ PR+ ones. One such subpopulation we call "Luminobasal" is ER-, PR- and cytokeratin 5 (CK5)-positive. It is not targeted for treatment. METHODS: To address the relationships between ER+PR+CK5- and ER-PR-CK5+ cells in Luminal cancers and tightly control their ratios we generated isogenic pure Luminal (pLUM) and pure Luminobasal (pLB) cells from the same parental Luminal human breast cancer cell line. We used high-throughput screening to identify pLB-specific drugs and examined their efficacy alone and in combination with hormone therapy in mixed-cell tumor models. RESULTS: We show that pLUM and MCF7 cells suppress proliferation of pLB cells in mixed-cell 3D colonies in vitro and that pLUM cells suppress growth of pLB cells in mixed-cell xenografts in vivo. High-throughput screening of 89 FDA-approved oncology drugs shows that pLB cells are sensitive to monotherapy with the epidermal growth factor receptor (EGFR) inhibitors gefitinib and erlotinib. By exploiting mixed-cell 3D colonies and mixed-cell solid mouse tumors models we demonstrate that combination therapy with gefitinib plus the anti-estrogen fulvestrant constitutes a robust treatment strategy. CONCLUSIONS: We propose that response to combination endocrine/EGFR inhibitor therapies in heterogeneous Luminal cancers may improve long-term survival in patients whose primary tumors have been preselected for appropriate biomarkers, including ER, PR, CK5 and EGFR.


Assuntos
Neoplasias da Mama/metabolismo , Queratina-5/metabolismo , Modelos Biológicos , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Animais , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Imunofenotipagem , Queratina-5/genética , Células MCF-7 , Camundongos , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Bibliotecas de Moléculas Pequenas
4.
iScience ; 26(9): 107703, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37701814

RESUMO

Bladder cancer (BLCA) is more common in men but more aggressive in women. Sex-based differences in cancer biology are commonly studied using a murine model with BLCA generated by N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN). While tumors in the BBN model have been profiled, these profiles provide limited information on the tumor microenvironment. Here, we applied single-cell RNA sequencing to characterize cell-type specific transcriptional differences between male and female BBN-induced tumors. We found proportional and gene expression differences in epithelial and non-epithelial subpopulations between male and female tumors. Expression of several genes predicted sex-specific survival in several human BLCA datasets. We identified novel and clinically relevant sex-specific transcriptional signatures including immune cells in the tumor microenvironment and it validated the relevance of the BBN model for studying sex differences in human BLCA. This work highlights the importance of considering sex as a biological variable in the development of new and accurate cancer markers.

5.
BMC Mol Biol ; 13: 10, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22439847

RESUMO

BACKGROUND: Covalent modification of nuclear receptors by the Small Ubiquitin-like Modifier (SUMO) is dynamically regulated by competing conjugation/deconjugation steps that modulate their overall transcriptional activity. SUMO conjugation of progesterone receptors (PRs) at the N-terminal lysine (K) 388 residue of PR-B is hormone-dependent and suppresses PR-dependent transcription. Mutation of the SUMOylation motif promotes transcriptional synergy. RESULTS: The present studies address mechanisms underlying this transcriptional synergy by using SUMOylation deficient PR mutants and PR specifically deSUMOylated by Sentrin-specific proteases (SENPs). We show that deSUMOylation of a small pool of receptors by catalytically competent SENPs globally modulates the cooperativity-driven transcriptional synergy between PR observed on exogenous promoters containing at least two progesterone-response elements (PRE2). This occurs in part by raising PR sensitivity to ligands. The C-terminal ligand binding domain of PR is required for the transcriptional stimulatory effects of N-terminal deSUMOylation, but neither a functional PR dimerization interface, nor a DNA binding domain exhibiting PR specificity, are required. CONCLUSION: We conclude that direct and reversible SUMOylation of a minor PR protein subpopulation tightly controls the overall transcriptional activity of the receptors at complex synthetic promoters. Transcriptional synergism controlled by SENP-dependent PR deSUMOylation is dissociable from MAPK-catalyzed receptor phosphorylation, from SRC-1 coactivation and from recruitment of histone deacetylases to promoters. This will provide more information for targeting PR as a part of hormonal therapy of breast cancer. Taken together, these data demonstrate that the SUMOylation/deSUMOylation pathway is an interesting target for therapeutic treatment of breast cancer.


Assuntos
Receptores de Progesterona/metabolismo , Proteína SUMO-1/metabolismo , Transcrição Gênica , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cisteína Endopeptidases/metabolismo , Endopeptidases/metabolismo , Feminino , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Coativador 1 de Receptor Nuclear/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Receptores de Progesterona/genética , Transdução de Sinais , Sumoilação
6.
Commun Biol ; 3(1): 720, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247183

RESUMO

Immunotherapies targeting the PD-1/PD-L1 axis are now a mainstay in the clinical management of multiple cancer types, however, many tumors still fail to respond. CCL2 is highly expressed in various cancer types and has been shown to be associated with poor prognosis. Inhibition or blockade of the CCL2/CCR2 signaling axis has thus been an area of interest for cancer therapy. Here we show across multiple murine tumor and metastasis models that CCR2 antagonism in combination with anti-PD-1 therapy leads to sensitization and enhanced tumor response over anti-PD-1 monotherapy. We show that enhanced treatment response correlates with enhanced CD8+ T cell recruitment and activation and a concomitant decrease in CD4+ regulatory T cell. These results provide strong preclinical rationale for further clinical exploration of combining CCR2 antagonism with PD-1/PD-L1-directed immunotherapies across multiple tumor types especially given the availability of small molecule CCR2 inhibitors and antibodies.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/terapia , Receptores CCR2/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Terapia Combinada , Feminino , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , RNA-Seq , Neoplasias da Bexiga Urinária/terapia
7.
Sci Adv ; 5(2): eaav2437, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30801016

RESUMO

While a fraction of cancer patients treated with anti-PD-1 show durable therapeutic responses, most remain unresponsive, highlighting the need to better understand and improve these therapies. Using an in vivo screening approach with a customized shRNA pooled library, we identified DDR2 as a leading target for the enhancement of response to anti-PD-1 immunotherapy. Using isogenic in vivo murine models across five different tumor histologies-bladder, breast, colon, sarcoma, and melanoma-we show that DDR2 depletion increases sensitivity to anti-PD-1 treatment compared to monotherapy. Combination treatment of tumor-bearing mice with anti-PD-1 and dasatinib, a tyrosine kinase inhibitor of DDR2, led to tumor load reduction. RNA-seq and CyTOF analysis revealed higher CD8+ T cell populations in tumors with DDR2 depletion and those treated with dasatinib when either was combined with anti-PD-1 treatment. Our work provides strong scientific rationale for targeting DDR2 in combination with PD-1 inhibitors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Dasatinibe/farmacologia , Receptor com Domínio Discoidina 2/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Imunidade Celular , Imunoterapia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Receptor com Domínio Discoidina 2/imunologia , Feminino , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Receptor de Morte Celular Programada 1/imunologia
8.
Diseases ; 6(1)2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301281

RESUMO

Luminal breast cancers express estrogen (ER) and progesterone (PR) receptors, and respond to endocrine therapies. However, some ER+PR+ tumors display intrinsic or acquired resistance, possibly related to PR. Two PR isoforms, PR-A and PR-B, regulate distinct gene subsets that may differentially influence tumor fate. A high PR-A:PR-B ratio is associated with poor prognosis and tamoxifen resistance. We speculate that excessive PR-A marks tumors that will relapse early. Here we address mechanisms by which PR-A regulate transcription, focusing on SUMOylation. We use receptor mutants and synthetic promoter/reporters to show that SUMOylation deficiency or the deSUMOylase SENP1 enhance transcription by PR-A, independent of the receptors' dimerization interface or DNA binding domain. De-SUMOylation exposes the agonist properties of the antiprogestin RU486. Thus, on synthetic promoters, SUMOylation functions as an independent brake on transcription by PR-A. What about PR-A SUMOylation of endogenous human breast cancer genes? To study these, we used gene expression profiling. Surprisingly, PR-A SUMOylation influences progestin target genes differentially, with some upregulated, others down-regulated, and others unaffected. Hormone-independent gene regulation is also PR-A SUMOylation dependent. Several SUMOylated genes were analyzed in clinical breast cancer database. In sum, we show that SUMOylation does not simply repress PR-A. Rather it regulates PR-A activity in a target selective manner including genes associated with poor prognosis, shortened survival, and metastasis.

9.
Diseases ; 5(3)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28933369

RESUMO

Breast cancer is one of the most common cancers and the second leading cause of cancer death in the United States. Estrogen receptor (ER)-positive cancer is the most frequent subtype representing more than 70% of breast cancers. These tumors respond to endocrine therapy targeting the ER pathway including selective ER modulators (SERMs), selective ER downregulators (SERDs) and aromatase inhibitors (AIs). However, resistance to endocrine therapy associated with disease progression remains a significant therapeutic challenge. The precise mechanisms of endocrine resistance remain unclear. This is partly due to the complexity of the signaling pathways that influence the estrogen-mediated regulation in breast cancer. Mechanisms include ER modifications, alteration of coregulatory function and modification of growth factor signaling pathways. In this review, we provide an overview of epigenetic mechanisms of tamoxifen resistance in ER-positive luminal breast cancer. We highlight the effect of epigenetic changes on some of the key mechanisms involved in tamoxifen resistance, such as tumor-cell heterogeneity, ER signaling pathway and cancer stem cells (CSCs). It became increasingly recognized that CSCs are playing an important role in driving metastasis and tamoxifen resistance. Understanding the mechanism of tamoxifen resistance will provide insight into the design of novel strategies to overcome the resistance and make further improvements in breast cancer therapeutics.

10.
Epigenomics ; 7(5): 847-62, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25689414

RESUMO

Luminal breast cancers represent approximately 75% of cases. Explanations into the causes of endocrine resistance are complex and are generally ascribed to genomic mechanisms. Recently, attention has been drawn to the role of epigenetic modifications in hormone resistance. We review these here. Epigenetic modifications are reversible, heritable and include changes in DNA methylation patterns, modification of histones and altered microRNA expression levels that target the receptors or their signaling pathways. Large-scale analyses indicate distinct epigenomic profiles that distinguish breast cancers from normal and benign tissues. Taking advantage of the reversibility of epigenetic modifications, drugs that target epigenetic modifiers, given in combination with chemotherapies or endocrine therapies, may represent promising approaches to restoration of therapy responsiveness in these cases.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Metilação , MicroRNAs/genética
11.
J Steroid Biochem Mol Biol ; 140: 80-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24333793

RESUMO

Progesterone plays a key role in the development, differentiation and maintenance of female reproductive tissues and has multiple non-reproductive neural functions. Depending on the cell and tissue, the hormonal environment, growth conditions and the developmental stage, progesterone can either stimulate cell growth or inhibit it while promoting differentiation. Progesterone receptors (PRs) belong to the steroid hormone receptor superfamily of ligand-dependent transcription factors. PR proteins are subject to extensive post-translational modifications that include phosphorylation, acetylation, ubiquitination and SUMOylation. The interplay among these modifications is complex with alteration of the receptors by one factor influencing the impact of another. Control over these modifications is species-, tissue- and cell-specific. They in turn regulate multiple functions including PR stability, their subcellular localization, protein-protein interactions and transcriptional activity. These complexities may explain how tissue- and gene-specific differences in regulation are achieved in the same organism, by the same receptor protein and hormone. Here we review current knowledge of PR post-translational modifications and discuss how these may influence receptor function focusing on human breast cancer cells. There is much left to be learned. However, our understanding of this may help to identify therapeutic agents that target PR activity in tissue-specific, even gene-specific ways.


Assuntos
Processamento de Proteína Pós-Traducional , Receptores de Progesterona/metabolismo , Acetilação , Animais , Neoplasias da Mama/metabolismo , Feminino , Humanos , Camundongos , Fosforilação , Sumoilação , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA