Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 29(5): 737-48, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25676613

RESUMO

The aim of this study was to investigate the antiproliferative and protective effects of the brown seaweeds, Turbinaria ornata and Padina pavonia, against azoxymethane (AOM)-induced colon carcinogenesis in mice. Both algal extracts showed anti-proliferative effects on the human carcinoma cell line HCT-116 in vitro, with T. ornata demonstrating a more potent effect. Male albino Swiss mice received intraperitoneal injections of AOM (10 mg/kg) once a week for two consecutive weeks and 100 mg/kg of either T. ornata or P. pavonia extracts. AOM-induced mice exhibited alterations in the histological structure of the colon, elevated lipid peroxidation and nitric oxide, declined glutathione content and reduced activity of superoxide dismutase and glutathione peroxidase. In addition, AOM induced downregulation of peroxisome proliferator activated receptor gamma (PPARγ) and p53 mRNA expression, with concomitant upregulation of nuclear factor-kappa B (NF-κB) in colon tissue. Administration of either algal extract markedly alleviated the recorded alterations. In conclusion, the current study suggests that T. ornata and P. pavonia, through their antioxidant and anti-inflammatory effects, are able to attenuate colon inflammation by downregulating NF-κB expression. Furthermore, the protective effects of both algae against AOM-initiated carcinogenesis were attributed, at least in part, to their ability to upregulate colonic PPARγ and p53 expression.


Assuntos
Neoplasias do Colo/patologia , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Phaeophyceae/química , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Azoximetano , Carcinogênese/induzido quimicamente , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Neoplasias do Colo/induzido quimicamente , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Inflamação/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Alga Marinha/química , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
2.
Lab Invest ; 91(7): 1079-91, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21519332

RESUMO

Tissue-type plasminogen activator (tPA) is a major protease of the central nervous system. Most studies to date have used in situ- or gel-based zymographic assays to monitor in vivo changes in neural tPA activity. In this study, we demonstrate that the amidolytic assay can be adapted to accurately detect changes in net tPA activity in mouse brain tissues. Using the amidolytic assay, we examined differences in net tPA activity in the cerebral cortex, sub-cortical structures and cerebellum in wildtype (WT) and tPA(-/-) mice, and in transgenic mice selectively overexpressing tPA in neurons. In addition, we assessed changes in endogenous net tPA activity in WT mice following morphine administration, epileptic seizures, traumatic brain injury and ischaemic stroke-neurological settings in which tPA has a known functional role. Under these conditions, acute and compartment-specific regulation of tPA activity was observed. tPA also participates in various forms of chronic neurodegeneration. Accordingly, we assessed tPA activity levels in mouse models of Alzheimer's disease (AD) and spinocerebellar ataxia type-1 (SCA1). Decreased tPA activity was detected in the cortex and subcortex of AD mice, whereas increased tPA activity was found in the cerebellum of SCA1 mice. These findings extend the existing hypotheses that low tPA activity promotes AD, whereas increased tPA activity contributes to cerebellar degeneration. Collectively, our results exemplify the utility of the amidolytic assay and emphasise tPA as a complex mediator of brain function and dysfunction. On the basis of this evidence, we propose that alterations in tPA activity levels could be used as a biomarker for perturbations in brain homeostasis.


Assuntos
Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Compartimento Celular , Morfina/administração & dosagem , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Sequência de Bases , Primers do DNA , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA