Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Divers ; 27(2): 695-708, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35616802

RESUMO

SARS, or severe acute respiratory syndrome, is caused by a novel coronavirus (COVID-19). This situation has compelled many pharmaceutical R&D companies and public health research sectors to focus their efforts on developing effective therapeutics. SARS-nCoV-2 was chosen as a protein spike to targeted monoclonal antibodies and therapeutics for prevention and treatment. Deep mutational scanning created a monoclonal antibody to characterize the effects of mutations in a variable antibody fragment based on its expression levels, specificity, stability, and affinity for specific antigenic conserved epitopes to the Spike-S-Receptor Binding Domain (RBD). Improved contacts between Fv light and heavy chains and the targeted antigens of RBD could result in a highly potent neutralizing antibody (NAbs) response as well as cross-protection against other SARS-nCoV-2 strains. It undergoes multipoint core mutations that combine enhancing mutations, resulting in increased binding affinity and significantly increased stability between RBD and antibody. In addition, we improved. Structures of variable fragment (Fv) complexed with the RBD of Spike protein were subjected to our established in-silico antibody-engineering platform to obtain enhanced binding affinity to SARS-nCoV-2 and develop ability profiling. We found that the size and three-dimensional shape of epitopes significantly impacted the activity of antibodies produced against the RBD of Spike protein. Overall, because of the conformational changes between RBD and hACE2, it prevents viral entry. As a result of this in-silico study, the designed antibody can be used as a promising therapeutic strategy to treat COVID-19.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Epitopos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/metabolismo , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Antivirais/farmacologia , Anticorpos Antivirais/metabolismo , SARS-CoV-2/metabolismo , Ligação Proteica
2.
Genomics ; 107(1): 24-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26688439

RESUMO

Familial hypercholesterolemia (FH) is an autosomal dominant disease, predominantly caused by variants in the low-density lipoprotein (LDL) receptor gene (LDLR). Herein, we describe genetic analysis of severely affected homozygous FH patients who were mostly resistant to statin therapy and were managed on an apheresis program. We identified a recurrent frameshift mutation p.(G676Afs*33) in exon 14 of the LDLR gene in 9 probands and their relatives in an apparently unrelated Saudi families. We also describe a three dimensional homology model of the LDL receptor protein (LDLR) structure and examine the consequence of the frameshift mutation p.(G676Afs*33), as this could affect the LDLR structure in a region involved in dimer formation, and protein stability. This finding of a recurrent mutation causing FH in the Saudi population could serve to develop a rapid genetic screening procedure for FH, and the 3D-structure analysis of the mutant LDLR, may provide tools to develop a mechanistic model of the LDLR function.


Assuntos
Mutação da Fase de Leitura , Hiperlipoproteinemia Tipo II/genética , Receptores de LDL/química , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Éxons , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Receptores de LDL/genética
3.
Mol Genet Genomics ; 289(3): 469-87, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24562863

RESUMO

We screened for the major essential single-nucleotide polymorphism (SNP) variant that might be associated with the MSH2 gene based on the data available from three types of human tissue samples [156 lymphoblastoid cell variations (LCL), 160 epidermis, 166 fat]. An association analysis confirmed that the KCNK12 SNP variant (rs748780) was highly associated (p value 9 × 10(-4)) with the MSH2 gene for all three samples. Using SNP identification, we further found that the recognized SNP was also relevant among Hapmap populations. Techniques that display specific SNPs associated with the gene of interest or nearby genes provide more reliable genetic associations than techniques that rely on data from individual SNPs. We investigated the MSH2 gene regional linkage association with the determined SNP (rs748780), KCNK12 variant (Allele T>C) in the intronic region, in HapMap3 full dataset populations, Yoruba in Ibadan, Nigeria (YRI), Utah residents with ancestry from northern Europe (CEU), Han Chinese in Beijing, China (CHB), and a population of Mexican ancestry in Los Angeles, California (MEX). A gene-based SNP association analysis analyzes the combined impact of every variant within the gene while creating referrals to linkage disequilibrium or connections between markers. Our results indicated that among the four populations studied, this association was highest in the MEX population based on the r(2) value; a similar pattern was also observed in the other three populations. The relevant SNP rs748780 in KCNK12 is related to a superfamily of potassium channel pore-forming P-domain proteins as well as to other non-pore-forming proteins and has been shown to be relevant to neurological disorder predisposition in MEX as well as in other populations.


Assuntos
Reparo de Erro de Pareamento de DNA , Estudos de Associação Genética , Proteína 2 Homóloga a MutS/genética , Polimorfismo de Nucleotídeo Único , Grupos Populacionais/genética , Alelos , Linhagem Celular , Mapeamento Cromossômico , Biologia Computacional/métodos , Frequência do Gene , Estudo de Associação Genômica Ampla , Genômica , Haplótipos , Humanos , Desequilíbrio de Ligação , Anotação de Sequência Molecular
4.
Int J Mol Sci ; 15(11): 19924-37, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25365179

RESUMO

A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %), with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC), tensile test, and thermo gravimetric analysis (TGA). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME) in the resulting nanocomposite was investigated by a fold-deploy "U"-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices.


Assuntos
Ácido Láctico/química , Óleo de Semente do Linho/química , Nanocompostos/química , Nanotubos de Carbono/química , Plastificantes/química , Polímeros/química , Varredura Diferencial de Calorimetria , Condutividade Elétrica , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Poliésteres , Resistência à Tração , Termogravimetria
5.
Genes Genomics ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896352

RESUMO

BACKGROUND: Choroid plexus carcinomas (CPCs) are rare malignant tumors primarily affecting pediatric patients and often co-occur with Li-Fraumeni Syndrome (LFS), an inherited predisposition to early-onset malignancies in multiple organ systems. LFS is closely linked to TP53 mutations, with germline TP53 gene mutations present in approximately 75% of Li-Fraumeni syndrome families and 25% of Li-Fraumeni-like syndrome families. Individuals with TP53 mutations also have an elevated probability of carrying mutations in BRCA1 and BRCA2 genes. OBJECTIVE: To investigate the structural and functional implications of the TP53: 799C > T, p. (Arg267Trp) missense mutation, initially identified in a Saudi family, and understand its impact on TP53 functionality and related intermolecular interactions. METHODS: Computational analyses were conducted to examine the structural modifications resulting from the TP53: 799C > T, p. (Arg267Trp) mutation. These analyses focused on the mutation's impact on hydrogen bonding, ionic interactions, and the specific interaction with Cell Cycle and Apoptosis Regulator 2 (CCAR2), as annotated in UniProt. RESULTS: The study revealed that the native Arg267 residue is critical for a salt bridge interaction with glutamic acid at position 258. The mutation-induced charge alteration has the potential to disrupt this ionic bonding. Additionally, the mutation is located within an amino acid region crucial for interaction with CCAR2. The altered properties of the amino acid within this domain may affect its functionality and disrupt this interaction, thereby impacting the regulation of catalytic enzyme activity. CONCLUSIONS: Our findings highlight the intricate intermolecular interactions governing TP53 functionality. The TP53: 799C > T, p. (Arg267Trp) mutation causes structural modifications that potentially disrupt critical ionic bonds and protein interactions, offering valuable insights for the development of targeted mutants with distinct functional attributes. These insights could inform therapeutic strategies for conditions associated with TP53 mutations.

6.
RSC Adv ; 14(6): 3972-3984, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38288152

RESUMO

Imidazopyridazines are fused heterocycles, like purines, with a pyridazine ring replacing the pyrimidine ring in purines. Imidazopyridazines have been primarily studied for their kinase inhibition activity in the development of new anticancer and antimalarial agents. In addition to this, they have also been investigated for their anticonvulsant, antiallergic, antihistamine, antiviral, and antitubercular properties. Herein, we review the background and development of different imidazopyridazines as potential pharmacological agents. Moreover, the scope of this relatively less charted heterocyclic scaffold is also highlighted.

7.
Int J Mol Sci ; 14(2): 3921-45, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23434671

RESUMO

Although rice resistance plays an important role in controlling the brown planthopper (BPH), Nilaparvata lugens, not all varieties have the same level of protection against BPH infestation. Understanding the molecular interactions in rice defense response is an important tool to help to reveal unexplained processes that underlie rice resistance to BPH. A proteomics approach was used to explore how wild type IR64 and near-isogenic rice mutants with gain and loss of resistance to BPH respond during infestation. A total of 65 proteins were found markedly altered in wild type IR64 during BPH infestation. Fifty-two proteins associated with 11 functional categories were identified using mass spectrometry. Protein abundance was less altered at 2 and 14 days after infestation (DAI) (T1, T2, respectively), whereas higher protein levels were observed at 28 DAI (T3). This trend diminished at 34 DAI (T4). Comparative analysis of IR64 with mutants showed 22 proteins that may be potentially associated with rice resistance to the brown planthopper (BPH). Ten proteins were altered in susceptible mutant (D1131) whereas abundance of 12 proteins including S-like RNase, Glyoxalase I, EFTu1 and Salt stress root protein "RS1" was differentially changed in resistant mutant (D518). S-like RNase was found in greater quantities in D518 after BPH infestation but remained unchanged in IR64 and decreased in D1131. Taken together, this study shows a noticeable level of protein abundance in the resistant mutant D518 compared to the susceptible mutant D1131 that may be involved in rendering enhanced level of resistance against BPH.

8.
Life (Basel) ; 13(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511917

RESUMO

BACKGROUND: Familial Hypercholesterolemia (FH) is a hereditary condition that causes a rise in blood cholesterol throughout a person's life. FH can result in myocardial infarction and even sudden death if not treated. FH is thought to be caused mainly by variants in the gene for the low-density lipoprotein receptor (LDLR). This study aimed to investigate the genetic variants in FH patients, verify their pathogenicity, and comprehend the relationships between genotype and phenotype. Also, review studies assessed the relationship between the LDLR null variants and the reaction to lipid-lowering therapy. METHODS: The study utilised high-throughput next-generation sequencing for genetic screening of FH-associated genes and capillary sequencing for cascade screening. Furthermore, bioinformatic analysis was employed to describe the pathogenic effects of the revealed novel variant on the structural features of the corresponding RNA molecule. RESULTS: We studied the clinical signs of hypercholesterolemia in a Saudi family with three generations of FH. We discovered a novel frameshift variant (c.666_670dup, p.(Asp224Alafs*43) in the LDLR and a known single nucleotide variant (c.9835A > G, p.(Ser3279Gly) in the APOB gene. It is thought that the LDLR variant causes a protein to be prematurely truncated, likely through nonsense-mediated protein decay. The LDLR variant is strongly predicted to be pathogenic in accordance with ACMG guidelines and co-segregated with the FH clinical characteristics of the family. This LDLR variant exhibited severe clinical FH phenotypes and was restricted to the LDLR protein's ligand-binding domain. According to computational functional characterization, this LDLR variant was predicted to change the free energy dynamics of the RNA molecule, thereby affecting its stability. This frameshift variant is thought to eliminate important functional domains in LDLR that are required for receptor recycling and LDL particle binding. We provide insight into how FH patients with a null variant in the LDLR gene respond to lipid-lowering therapy. CONCLUSIONS: The findings expand the range of FH variants and assist coronary artery disease preventive efforts by improving diagnosis, understanding the genotype-phenotype relationship, prognosis, and personalised therapy for patients with FH.

9.
Cell Signal ; 109: 110798, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423342

RESUMO

This study investigated the efficacy of existing vaccines against hospitalization and infection due to the Omicron variant of COVID-19, particularly for those who received two doses of Moderna or Pfizer vaccines and one dose of Johnson & Johnson vaccine or who were vaccinated more than five months before. A total of 36 variants in Omicron's spike protein, targeted by all three vaccinations, have made antibodies less effective at neutralizing the virus. The genotyping of the SARS-CoV-2 viral sequence revealed clinically significant variants such as E484K in three genetic mutations (T95I, D614G, and del142-144). A woman showed two of these mutations, indicating a potential risk of infection after successful immunization, as recently reported by Hacisuleyman (2021). We examine the effects of mutations on domains (NID, RBM, and SD2) found at the interfaces of the spike domains Omicron B.1.1529, Delta/B.1.1529, Alpha/B.1.1.7, VUM B.1.526, B.1.575.2, and B.1.1214 (formerly VOI Iota). We tested the affinity of Omicron for ACE2 and found that the wild- and mutant-spike proteins were using atomistic molecular dynamics simulations. According to the binding free energies calculated during mutagenesis, the ACE2 bound Omicron spikes more strongly than the wild strain SARS-CoV-2. T95I, D614G, and E484K are three substitutions that significantly contribute to RBD, corresponding to ACE2 binding energies and a doubling of the electrostatic potential of Omicron spike proteins. The Omicron appears to bind to ACE2 with greater affinity, increasing its infectivity and transmissibility. The spike virus was designed to strengthen antibody immune evasion through binding while boosting receptor binding by enhancing IgG and IgM antibodies that stimulate human ß-cell, as opposed to the wild strain, which has more vital stimulation of both antibodies.


Assuntos
COVID-19 , Vacinas , Feminino , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , Infecções Irruptivas , Glicoproteína da Espícula de Coronavírus/genética , Imunoglobulina M
10.
Hum Mutat ; 33(2): 351-4, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22065524

RESUMO

Autosomal recessive ataxias are heterogeneous group of disorders characterized by cerebellar atrophy and peripheral sensorimotor neuropathy. Molecular characterization of this group of disorders identified a number of genes contributing to these overlapping phenotypes. Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive form of ataxia caused by mutations in the SETX gene. We report on a consanguineous family with autosomal recessive inheritance and clinical characteristics of AOA2, and no mutations in the SETX gene. We mapped the AOA locus in this family to chromosome 17p12-p13. Sequencing of all genes in the refined region identified a homozygous missense mutation in PIK3R5 that was absent in 477 normal controls. Our characterization of the PIK3R5 protein and findings suggest that it may play a role in the development of the cerebellum and vermis.


Assuntos
Apraxias/genética , Ataxia Telangiectasia/genética , Ataxia/genética , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Hipoalbuminemia/genética , Mutação de Sentido Incorreto , Fosfatidilinositol 3-Quinases/genética , Adolescente , Adulto , Animais , Apraxias/diagnóstico , Ataxia/diagnóstico , Ataxia Telangiectasia/diagnóstico , Encéfalo/patologia , Ataxia Cerebelar/congênito , Consanguinidade , DNA Helicases , Feminino , Ordem dos Genes , Ligação Genética , Homozigoto , Humanos , Hipoalbuminemia/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Camundongos , Enzimas Multifuncionais , Linhagem , Fenótipo , RNA Helicases/genética , Relações entre Irmãos , Adulto Jovem
11.
Protein Expr Purif ; 83(2): 190-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22538316

RESUMO

This study determined the full length sequence of glucose-6-phosphate dehydrogenase cDNA (G6PD) from the Arabian camel Camelus dromedarius using reverse transcription polymerase chain reaction. The C. dromedarius G6PD has an open reading frame of 1545 bp, and the cDNA encodes a protein of 515 amino acid residues with a molecular weight of 59.0 KDa. The amino acid sequence showed the highest identity with Equus caballus (92%) and Homo sapiens (92%). The G6PD cDNA was cloned and expressed into Escherichia coli as a fusion protein and was purified in a single chromatographic step using nickel affinity gel column. The purity and the molecular weight of the enzyme were checked on SDS-PAGE and the purified enzyme showed a single band on the gel with a molecular weight of 63.0 KDa. The specific activity of G6PD was determined to be 289.6 EU/mg protein with a fold purification of 95.45 and yield of 56.8%.


Assuntos
Camelus/genética , Escherichia coli/genética , Glucosefosfato Desidrogenase/biossíntese , Glucosefosfato Desidrogenase/genética , Proteínas Recombinantes de Fusão/biossíntese , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli/química , Escherichia coli/enzimologia , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/isolamento & purificação , Immunoblotting , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de Proteína
12.
Curr Vasc Pharmacol ; 20(4): 361-369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35249492

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is a common illness mainly caused by variants occurring in the low-density lipoprotein receptor (LDLR) gene. FH is a leading cause of coronary artery disease. OBJECTIVE: This study aims to determine genetic defect(s) in homozygous and heterozygous FH index patients and their first-degree blood relatives and understand the genotype-phenotype correlation. METHODS: This study employed the genetic screening of FH-related genes by next-generation sequencing and cascade screening by capillary sequencing. RESULTS: We identified the presence of a novel frameshift variant [c.335_336insCGAG, p.(F114Rfs*17)] and three known missense variants [c.622G>A, p.(E208K)], [c.1474G>A, p.(D492N)], [c.1429G>A, p.(D477N)] in the LDLR gene of four unrelated Saudi families with FH. In proband 1, a nonsense variant c.1421C>G, p.(S474*) was also detected at exon 9 of the lipoprotein lipase gene. The segregation arrangement of the identified variants corresponded with the clinical characteristics. In this study, all the detected variants were confined in the ligand-binding domain and epidermal growth factor (EGF)-precursor homology domain of the LDLR protein, which portrayed severe clinical phenotypes of FH. Moreover, these LDLR variants were in a highly conserved residue of the proteins. CONCLUSION: In addition to the finding of the novel variant in the LDLR gene that extends the spectrum of variants causing FH, the results of this study also support the need for diagnostic screening and cascade genetic testing of this high-risk condition and to understand the genotype-phenotype correlation, which could lead to better prevention of coronary artery disease.


Assuntos
Doença da Artéria Coronariana , Hiperlipoproteinemia Tipo II , Humanos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Arábia Saudita/epidemiologia , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Receptores de LDL/genética , Receptores de LDL/química , Homozigoto , Fenótipo , Mutação
13.
Int J Mol Sci ; 12(7): 4214-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21845074

RESUMO

Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B') from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids. The complete cDNA sequence of the Arabian camel HSPA6 gene was submitted to NCBI GeneBank (accession number HQ214118.1). The BLAST analysis indicated that C. dromedaries HSPA6 gene nucleotides shared high similarity (77-91%) with heat shock gene nucleotide of other mammals. The deduced 643 amino acid sequences (accession number ADO12067.1) showed that the predicted protein has an estimated molecular weight of 70.5 kDa with a predicted isoelectric point (pI) of 6.0. The comparative analyses of camel HSPA6 protein sequences with other mammalian heat shock proteins (HSPs) showed high identity (80-94%). Predicted camel HSPA6 protein structure using Protein 3D structural analysis high similarities with human and mouse HSPs. Taken together, this study indicates that the cDNA sequences of HSPA6 gene and its amino acid and protein structure from the Arabian camel are highly conserved and have similarities with other mammalian species.


Assuntos
Camelus/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/química , DNA Complementar/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Humanos , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Estrutura Terciária de Proteína , RNA/química , RNA/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos
14.
Biodes Manuf ; 4(3): 490-505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552630

RESUMO

The World Health Organization has declared the rapidly spreading coronavirus to be a global pandemic. The FDA is yet to approve a vaccine for human novel coronavirus. Here, we developed a peptide-based vaccine and used high-throughput screening by molecular dynamics simulation to identify T-cell- and ß-cell-recognized epitopes for producing specific antibodies against SARS-nCoV-2. We construct ~ 12 P' antigenic epitope peptides to develop a more effective vaccine and identify specific antibodies. These epitope peptides selectively presented the best antigen presentation scores for both human pMHC class I and II alleles to develop a strong binding affinity. All antigens identified of SARS-nCoV-2 different proteins by each attached specific ~ 1-7 L linker adaptor were used to construct a broad single peripheral peptide vaccine. It is expected to be highly antigenic with a minimum allergic effect. As a result of these exciting outcomes, expressing a vaccine using the intimated peptide was highly promising and positive to be highly proposed as epitope-based peptide vaccine of specific antibody against SARS-nCoV-2 by initiating T cells and ß-cells. An in vitro study for the proposed peptide-based vaccine is mostly recommended. Further clinical trials are required to check the efficacy of this vaccine.

15.
Clin Appl Thromb Hemost ; 27: 1076029620978532, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33448877

RESUMO

The rare Gln534 (Factor V Leiden; FVL) allele (1:169,519,049 T>C) is associated with an increased risk of venous thrombosis. The purpose of this study was to measure the prevalence of Factor V Leiden mutation in thrombophilia patients with deep vein thrombosis. Also, we investigated the functional and structural characteristics of this mutation p.(Arg534Gln) to be examined the cumulative impact on venous thrombosis risk as well correlated with different populations by Genome Wide Association Studies (GWAS). A total of 108 patients with idiopathic deep vein thrombosis were examined for Factor V Leiden gene mutation. Our preliminary data show that about 10% of patients were detected with the heterozygous and homozygous form of the Factor V Leiden mutation. An association analysis confirmed that the Factor V SNP variant (rs6025) was highly associated (P-value 4.91 x10-^ -39) with an increased risk of venous thrombosis. Also, we found that the recognized SNP was important among HapMap populations. Our results indicated that among the 3 populations (Asian, African, and American) studied, this association was highest in the African population based on the r(2) significant threshold (P-value 5e-190). In addition, this mutation was located at the domain F5/8 type A 2, which can disturb this domain and abolish its function. Because of aspartic acid nearby wild type position as form in the salt bridge due to this discharge will disturb the ionic interaction made by the wild type residue Arg534. This residue was not found to be in contact with other domains of which the function was known. However, contact with other molecules or domains (THPH2: MIM: 188055) were still possible and might be affected by this mutation that may cause thrombophilia due to activated protein C resistance.


Assuntos
Resistência à Proteína C Ativada/epidemiologia , Resistência à Proteína C Ativada/genética , Fator V/genética , Fator V/química , Feminino , Frequência do Gene , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Heterozigoto , Homozigoto , Humanos , Masculino , Modelos Moleculares , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Prevalência , Arábia Saudita/epidemiologia , Trombose Venosa/epidemiologia , Trombose Venosa/genética
16.
Front Chem ; 9: 808556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155379

RESUMO

An efficient atom-economical synthetic protocol to access new imidazole-based N-phenylbenzamide derivatives is described. A one-pot three-component reaction was utilized to provide a series of N-phenylbenzamide derivatives in a short reaction time (2-4 h) with an 80-85% yield. The cytotoxic evaluation revealed that derivatives 4e and 4f exhibited good activity, with IC50 values between 7.5 and 11.1 µM against the tested cancer cell lines. Computational studies revealed interesting insights: the docking of the active derivatives (4e and 4f) showed a higher affinity toward the target receptor protein than the control. Molecular dynamic simulations revealed that the active derivatives form stable complexes with the ABL1 kinase protein. Moreover, the ADME and drug-likeness of the derivatives reinforced the potential of the derivatives to be taken up for further development as anticancer agents.

17.
Clin Chim Acta ; 519: 247-254, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34015304

RESUMO

BACKGROUND: Thrombophilia is a substantial source of indisposition and mortality in several countries, including Arab populations. Deep venous thrombosis (DVT) with or without pulmonary embolism (PE) is the prevalent clinical manifestation of thrombophilia. While many genetic risk factors for DVT are known, almost all associated with hemostasis, many genetic factors remain unexplained. Nowadays, Next Generation Sequencing (NGS) offers a potential solution that allows several candidate genes to be analyzed simultaneously at a reasonable expense. METHODS: We performed variant screening in the thrombophilia associated genes in Factor V Leiden (FVL) mutation-negative patients using Ion Torrent Next-generation sequencing (NGS). Ion AmpliSeq panel for 18 genes was designed. Twenty-nine unrelated patients with idiopathic VTE were recruited for NGS. RESULTS: We were able to identify 19 variants (1 novel and 18 previously reported) in 10 out of 18 targeted genes. Pathogenic variants were identified in 22 patients demonstrating mutation detection rates of 76%. Previously reported variants in the F5, MTHFR, PROS1, PROC, F8, F9, SERPINA10, SERPIND1, and HRG genes were recognized in 21 patients. More than one variant in the targeted genes was detected in some of the patients with VTE. We identified SERPINA10 recurrent variant p.(R88*) in seven patients representing 32% of VTE cases. Additionally, we report one novel variant c.356G > T, p.(G119V) in the F7 gene, considered to be pathogenic in this study. CONCLUSIONS: Our studies finding illustrates the ability of targeted next-generation sequencing to uncover uncommon/unknown genetic variants that may predispose to thrombophilia. The finding of the novel variant in the F7 gene extends the spectrum of variants affecting thrombosis. While a comparatively small number of subjects have been included in our cohort, the findings summarize the possible genetic features of thrombophilia.


Assuntos
Trombofilia , Tromboembolia Venosa , Fator V/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Arábia Saudita , Trombofilia/genética , Tromboembolia Venosa/genética
18.
Glob Heart ; 15(1): 19, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32489792

RESUMO

Background: Familial hypercholesterolemia (FH) is an autosomal dominant inherited genetic disorder and results in the development of coronary artery disease (CAD). Clinical diagnosis of homozygous HH patients is usually straightforward because persistent hypercholesterolemia can produce xanthoma and corneal arcus. However, xanthoma may also be misdiagnosed as skin lesions and could therefore be mistreated. The aim of this case study report is to highlight the plight of patients with FH as means of raising awareness of the condition among dermatologists and health care practitioners, also to determine the genotype-phenotype correlation in severely affected homozygous FH proband patients. Methods: Genetic screening of FH associated genes was performed by Ion Torrent next-generation sequencing and cascade screening by capillary sequencing. Results: We present two clinical cases with prominent skin lesions seen in a dermatology clinic that were referred to plastic surgery for excision. Genetic testing was performed later, and confirmed common single nucleotide deletion variant (c.2027delG) in the LDLR alleles consequent to a frameshift mutation p.(G676Afs*33). In addition to the LDLR variant, two possibly damaging APOB variants p.(L3313I) and p.(L1212M) and three damaging variants p.(R19*), p.(G83Q) and p.(S474*) in APOC3, PON2 and LPL genes respectively were identified. The PON2 gene variant p.(G83Q) was found to be novel, while others have been previously reported. Both patients were refractory to pharmacological therapies and are currently on lipoprotein apheresis (LA). Conclusions: The present report indicates the need for increased awareness of FH, among the public and healthcare practitioners and supports the need for diagnostic screening and cascade genetic testing of this high-risk condition, which could ultimately lead to better prevention of CHD in this lethal condition.


Assuntos
Conscientização , Competência Clínica , Dermatologistas/psicologia , Testes Genéticos/métodos , Pessoal de Saúde/psicologia , Hiperlipoproteinemia Tipo II/diagnóstico , Xantomatose/diagnóstico , Adolescente , Adulto , Criança , Erros de Diagnóstico , Feminino , Variação Genética , Humanos , Hiperlipoproteinemia Tipo II/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Xantomatose/genética , Adulto Jovem
19.
Noncoding RNA Res ; 4(4): 121-127, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32072079

RESUMO

A recent study published to screen RPE65 in 187 families with Leber Congenital Amaurosis (LCA) by Zilin Zhong in 2019. There are seven novel variants were identified in RPE65, which was associated with LCA, but among only five were missense mutations [(c.124C > T, p.(Leu42Phe), c.149T > C, p. (Phe50Ser), c.340A > C, p.(Asn114His), c.425A > G, p.(Asp142Gly) and c.1399C > G, p.(Pro467Ala)] in the Chinese population and potentially facilitates its clinical implementation. Further in-continuation of this study to the target of five novel missense mutations were the analysis of both structural and functional impact by the molecular dynamics and simulation. The result of five missense mutations might in critical structural alterations of RPE65 protein, disrupt its membrane association or rescue the activity of enzyme due to thermodynamics stability, and for this reason impair its isomerohydrolase activity, resulting in retinal dystrophy. These observations suggest that the reduced protein stability and altered subcellular localization of RPE65 might signify a mechanism for these mutations to lead to vision loss in LCA patients.

20.
Noncoding RNA Res ; 4(3): 109-119, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31891019

RESUMO

Oxidative damaged DNA base lesions are repaired through human 8-oxoguanine DNA glycosylase gene (hOGG1) mediated pathways. A recent report based on the meta-analysis has suggested that the DNA Repair Gene hOGG1 variant Ser326Cys [3p26.2; allele S/C in nucleotide position αHelix2 Ser⇒Cys326] was associated with Lung Cancer risk in Caucasian population will alter the level Zhong et al., 2012. To the best of our knowledge, there has not been any such comprehensive in-silico investigation that validates the functional and structural impact of non-synonymous Lung Cancer Risk Associated Protein Domain (LCRAPD) mutation Ser326Cys (rs1052133) by molecular dynamics (MD) simulation approach following prediction of hOGG1 protein before and after the mutation. Further to the native and mutant protein structures, the amino acid residue and its secondary structure were observed through a solvent accessibility model for protein stability confirmation at the point of mutation. Taken together, this study suggests that the protein functional and structural studies could be a reasonable approach for investigating the impact of nsSNPs in future studies. In addition, 4295 patients samples incorporate with the analysis that genomic data types from cBioPortal. In the result, 4295 cases (91.5%) had alterations in all genes but the frequency of alterations in our targeted hOGG1 gene was shown with and without case alteration in the ratio (Logrank Test P-Value: 0.670) Kaplan-Meier by the number of patients at risk of the survival function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA