Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 117(6): 1464-1478, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35575437

RESUMO

The Streptococcus pneumoniae Rgg144/SHP144 regulator-peptide quorum sensing (QS) system is critical for nutrient utilization, oxidative stress response, and virulence. Here, we characterized this system by assessing the importance of each residue within the active short hydrophobic peptide (SHP) by alanine-scanning mutagenesis and testing the resulting peptides for receptor binding and activation of the receptor. Interestingly, several of the mutations had little effect on binding to Rgg144 but reduced transcriptional activation appreciably. In particular, a proline substitution (P21A) reduced transcriptional activation by 29-fold but bound with a 3-fold higher affinity than the wild-type SHP. Consistent with the function of Rgg144, the mutant peptide led to decreased utilization of mannose and increased susceptibility to superoxide generator paraquat. Pangenome comparison showed full conservation of P21 across SHP144 allelic variants. Crystallization of Rgg144 in the absence of peptide revealed a comparable structure to the DNA bound and free forms of its homologs suggesting similar mechanisms of activation. Together, these analyses identify key interactions in a critical pneumococcal QS system. Further manipulation of the SHP has the potential to facilitate the development of inhibitors that are functional across strains. The approach described here is likely to be effective across QS systems in multiple species.


Assuntos
Regulação Bacteriana da Expressão Gênica , Percepção de Quorum , Proteínas de Bactérias/metabolismo , Peptídeos/metabolismo , Percepção de Quorum/genética , Streptococcus pneumoniae/metabolismo
2.
PLoS Pathog ; 14(10): e1007328, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308062

RESUMO

Streptococcus pneumoniae (pneumococcus) is an opportunistic pathogen that causes otitis media, sinusitis, pneumonia, meningitis and sepsis. The progression to this pathogenic lifestyle is preceded by asymptomatic colonization of the nasopharynx. This colonization is associated with biofilm formation; the competence pathway influences the structure and stability of biofilms. However, the molecules that link the competence pathway to biofilm formation are unknown. Here, we describe a new competence-induced gene, called briC, and demonstrate that its product promotes biofilm development and stimulates colonization in a murine model. We show that expression of briC is induced by the master regulator of competence, ComE. Whereas briC does not substantially influence early biofilm development on abiotic surfaces, it significantly impacts later stages of biofilm development. Specifically, briC expression leads to increases in biofilm biomass and thickness at 72h. Consistent with the role of biofilms in colonization, briC promotes nasopharyngeal colonization in the murine model. The function of BriC appears to be conserved across pneumococci, as comparative genomics reveal that briC is widespread across isolates. Surprisingly, many isolates, including strains from clinically important PMEN1 and PMEN14 lineages, which are widely associated with colonization, encode a long briC promoter. This long form captures an instance of genomic plasticity and functions as a competence-independent expression enhancer that may serve as a precocious point of entry into this otherwise competence-regulated pathway. Moreover, overexpression of briC by the long promoter fully rescues the comE-deletion induced biofilm defect in vitro, and partially in vivo. These findings indicate that BriC may bypass the influence of competence in biofilm development and that such a pathway may be active in a subset of pneumococcal lineages. In conclusion, BriC is a part of the complex molecular network that connects signaling of the competence pathway to biofilm development and colonization.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Fragmentos de Peptídeos/metabolismo , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Virulência , Sequência de Aminoácidos , Animais , Chinchila , Feminino , Camundongos , Infecções Pneumocócicas/genética , Infecções Pneumocócicas/metabolismo , Regiões Promotoras Genéticas , Homologia de Sequência , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
3.
PLoS Pathog ; 14(5): e1007052, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750817

RESUMO

To survive diverse host environments, the human pathogen Streptococcus pneumoniae must prevent its self-produced, extremely high levels of peroxide from reacting with intracellular iron. However, the regulatory mechanism(s) by which the pneumococcus accomplishes this balance remains largely enigmatic, as this pathogen and other related streptococci lack all known redox-sensing transcription factors. Here we describe a two-component-derived response regulator, RitR, as the archetype for a novel family of redox sensors in a subset of streptococcal species. We show that RitR works to both repress iron transport and enable nasopharyngeal colonization through a mechanism that exploits a single cysteine (Cys128) redox switch located within its linker domain. Biochemical experiments and phylogenetics reveal that RitR has diverged from the canonical two-component virulence regulator CovR to instead dimerize and bind DNA only upon Cys128 oxidation in air-rich environments. Atomic structures show that Cys128 oxidation initiates a "helical unravelling" of the RitR linker region, suggesting a mechanism by which the DNA-binding domain is then released to interact with its cognate regulatory DNA. Expanded computational studies indicate this mechanism could be shared by many microbial species outside the streptococcus genus.


Assuntos
Proteínas Repressoras/metabolismo , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Peróxido de Hidrogênio/metabolismo , Transporte de Íons/fisiologia , Ferro/metabolismo , Oxirredução , Elementos de Resposta/fisiologia , Transdução de Sinais , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Virulência/genética
4.
Sci Rep ; 8(1): 6369, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686372

RESUMO

Microbes communicate with each other by using quorum sensing (QS) systems and modulate their collective 'behavior' for in-host colonization and virulence, biofilm formation, and environmental adaptation. The recent increase in genome data availability reveals the presence of several putative QS sensing circuits in microbial pathogens, but many of these have not been functionally characterized yet, despite their possible utility as drug targets. To increase the repertoire of functionally characterized QS systems in bacteria, we studied Rgg144/Shp144 and Rgg939/Shp939, two putative QS systems in the important human pathogen Streptococcus pneumoniae. We find that both of these QS circuits are induced by short hydrophobic peptides (Shp) upon sensing sugars found in the respiratory tract, such as galactose and mannose. Microarray analyses using cultures grown on mannose and galactose revealed that the expression of a large number of genes is controlled by these QS systems, especially those encoding for essential physiological functions and virulence-related genes such as the capsular locus. Moreover, the array data revealed evidence for cross-talk between these systems. Finally, these Rgg systems play a key role in colonization and virulence, as deletion mutants of these QS systems are attenuated in the mouse models of colonization and pneumonia.


Assuntos
Cápsulas Bacterianas/fisiologia , Proteínas de Bactérias/metabolismo , Manose/metabolismo , Fragmentos de Peptídeos/farmacologia , Infecções Pneumocócicas/microbiologia , Percepção de Quorum , Streptococcus pneumoniae/fisiologia , Animais , Proteínas de Bactérias/genética , Feminino , Galactose/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA