Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33737395

RESUMO

Acute kidney injury is highly prevalent and associated with high morbidity and mortality, and there are no approved drugs for its prevention and treatment. Vagus nerve stimulation (VNS) alleviates inflammatory diseases including kidney disease; however, neural circuits involved in VNS-induced tissue protection remain poorly understood. The vagus nerve, a heterogeneous group of neural fibers, innervates numerous organs. VNS broadly stimulates these fibers without specificity. We used optogenetics to selectively stimulate vagus efferent or afferent fibers. Anterograde efferent fiber stimulation or anterograde (centripetal) sensory afferent fiber stimulation both conferred kidney protection from ischemia-reperfusion injury. We identified the C1 neurons-sympathetic nervous system-splenic nerve-spleen-kidney axis as the downstream pathway of vagus afferent fiber stimulation. Our study provides a map of the neural circuits important for kidney protection induced by VNS, which is critical for the safe and effective clinical application of VNS for protection from acute kidney injury.


Assuntos
Injúria Renal Aguda/etiologia , Suscetibilidade a Doenças , Neuroimunomodulação , Baço/imunologia , Baço/inervação , Estimulação do Nervo Vago , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Camundongos , Neurônios , Sistema Nervoso Simpático/fisiologia
2.
J Physiol ; 601(12): 2293-2306, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37126218

RESUMO

The precise regulation of blood glucose levels is indispensable for maintaining physiological functions. C1 neurons determine the outflow of the autonomic nervous and endocrine systems to maintain blood glucose levels in the body. In contrast, activation of C1 neurons induces a decrease in activity, suggesting that hypoactivity also participates in maintaining blood glucose levels. To examine this, we evaluated both glycogenolysis and hypometabolism induced by the selective activation of C1 neurons. We used DbhCre/0 mice expressing receptors for chemogenetic tools in C1 neurons, resulting from microinjection of the viral vector. C1 neurons were activated by intraperitoneal injection of clozapine N-oxide (CNO). The chemogenetic activation of C1 neurons significantly decreased body temperature, oxygen consumption and carbon dioxide production. On the other hand, blood glucose levels were increased by activation of C1 neurons 2 h after CNO administration, even in the fasting state. In this situation, an increase in glucagon and corticosterone levels was observed, while hepatic glycogen content decreased significantly. Plasma insulin levels were not changed by the activation of C1 neurons despite the increase in blood glucose level. Furthermore, adrenal sympathetic nerve activity was significantly increased by the activation of C1 neurons, and plasma catecholamine levels increased significantly. In conclusion, the selective activation of C1 neurons using chemogenetic tools induced an increase in blood glucose levels, probably as a result of hepatic glycogenolysis and hypometabolism. KEY POINTS: Chemogenetic activation of C1 neurons in medulla oblongata decreased body temperature. Oxygen consumption and carbon dioxide production were decreased by chemogenetic activation of C1 neurons in medulla oblongata. Blood glucose levels were increased by chemogenetic activation of C1 neurons in medulla oblongata. Chemogenetic activation of C1 neurons in medulla oblongata increased glucagon, corticosterone and catecholamine levels in plasma. An increase in blood glucose levels by activation of C1 neurons occurred due to the combined effect of hepatic glycogenolysis and hypometabolism.


Assuntos
Glicemia , Glicogenólise , Camundongos , Animais , Glucagon , Corticosterona/farmacologia , Dióxido de Carbono , Neurônios/fisiologia , Bulbo/fisiologia , Catecolaminas
3.
Am J Physiol Regul Integr Comp Physiol ; 324(2): R152-R160, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534584

RESUMO

Autonomic nerves, including the sympathetic and parasympathetic nerves, control the immune system along with their physiological functions. On the peripheral side, the interaction between the splenic sympathetic nerves and immune cells is important for the anti-inflammatory effects. However, the central mechanism underlying these anti-inflammatory effects remains unclear. C1 neurons respond to stressors and subsequently determine the outflow of the autonomic nervous system. We have previously shown that C1 neurons protect against acute kidney injury and found a signaling connection between peripheral vestibular organs and C1 neurons. Thus, we hypothesized that hypergravity load or galvanic vestibular stimulation (GVS) might protect against acute lung injury. We showed that C1 neurons are histologically and functionally activated by stimulating the peripheral vestibular organs. Protection against acute lung injury that was induced by a 2 G load disappeared due to vestibular lesions or the deletion of C1 neurons. This GVS-induced protective effect was also eliminated by the deletion of the C1 neurons. Furthermore, GVS increased splenic sympathetic nerve activity in conscious mice, and splenic sympathetic denervation abolished the GVS-induced protection against acute lung injury. Therefore, the activated pathway between C1 neurons and splenic sympathetic nerves is indispensable for GVS-induced protection against acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Vestíbulo do Labirinto , Camundongos , Animais , Neurônios/fisiologia , Bulbo/fisiologia , Lesão Pulmonar Aguda/prevenção & controle , Anti-Inflamatórios , Estimulação Elétrica
4.
Brain Behav Immun ; 111: 138-150, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37037362

RESUMO

The immune system is known to be controlled by the autonomic nervous system including sympathetic and parasympathetic (vagus) nerves. C1 neurons in the medulla oblongata, which participate in the control of the autonomic nervous system, are responders to stressors and regulate the immune system. Short-term activation of C1 neurons suppresses inflammation, while the effect of a long-term activation of these neurons on the inflammatory reflex is unclear. We, herein, demonstrate that the coactivation of both the splenic sympathetic nerves and the adrenal gland adrenergic response are indispensable for the prognosis of acute lung injury. The chemogenetic activation of C1 neurons increased plasma catecholamine including adrenaline and noradrenaline levels. The deletion of catecholaminergic cells using local injections of viral vector in the adrenal gland abolished the protective effect against acute lung injury when the C1 neurons were stimulated by either chemogenetic or optogenetic tools. Furthermore, repeated activation of C1 neurons using chemogenetic tool inhibited the adrenal response without affecting the plasma noradrenaline levels, eliminated the protective effect against acute lung injury. This was rescued by the isoprenaline administration. We concluded that the maintenance of an adrenergic response via C1 neurons in the adrenal gland is a prerequisite for the delivery of an effective anti-inflammatory response.


Assuntos
Adrenérgicos , Neurônios , Adrenérgicos/farmacologia , Bulbo/fisiologia , Glândulas Suprarrenais , Norepinefrina/farmacologia , Anti-Inflamatórios/farmacologia
5.
Genes Cells ; 26(2): 45-55, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33211397

RESUMO

Rest (RE1-silencing transcription factor, also called Nrsf) is involved in the maintenance of the undifferentiated state of neuronal stem/progenitor cells by preventing precocious expression of neuronal genes. In order to further investigate the function of Rest in neurons, we generated and examined mice evoking genetic ablation of Rest specifically in neural tissues by generating Rest conditional knockout mice. As the Rest knockout mice are embryonically lethal, we used a Sox1-Cre allele to excise the floxed Rest gene from the early stage of nerve cell differentiation including neural crest-derived nerve cells. Using this conditional Rest knockout Sox1-Cre; Restflox/flox mice, we have revealed the role of Rest in the parasympathetic nervous system in the stomach and heart.


Assuntos
Deleção de Genes , Proteínas Repressoras/genética , Nervo Vago/fisiologia , Animais , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Neurônios/metabolismo , Pressão , Proteínas Repressoras/metabolismo , Estômago/inervação , Transmissão Sináptica
6.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563598

RESUMO

Schizophrenia is a serious psychiatric disorder that affects the social life of patients. Psychiatric disorders are caused by a complex combination of genetic (G) and environmental (E) factors. Polysialylation represents a unique posttranslational modification of a protein, and such changes in neural cell adhesion molecules (NCAMs) have been reported in postmortem brains from patients with psychiatric disorders. To understand the G × E effect on polysialylated NCAM expression, in this study, we performed precise measurements of polySia and NCAM using a disrupted-in-schizophrenia 1 (DISC1)-mutant mouse (G), a mouse model of schizophrenia, under acute stress conditions (E). This is the first study to reveal a lower number and smaller length of polySia in the suprachiasmatic nucleus of DISC1 mutants relative to those in wild-type (WT) mice. In addition, an analysis of polySia and NCAM responses to acute stress in five brain regions (olfactory bulb, prefrontal cortex, suprachiasmatic nucleus, amygdala, and hippocampus) revealed that the pattern of changes in these responses in WT mice and DISC1 mutants differed by region. These differences could indicate the vulnerability of DISC1 mutants to stress.


Assuntos
Proteínas do Tecido Nervoso , Esquizofrenia , Sialiltransferases , Animais , Encéfalo/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Sialiltransferases/metabolismo
7.
Kidney Int ; 95(3): 563-576, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30670317

RESUMO

The cholinergic anti-inflammatory pathway (CAP) links the nervous and immune systems and modulates innate and adaptive immunity. Activation of the CAP by vagus nerve stimulation exerts protective effects in a wide variety of clinical disorders including rheumatoid arthritis and Crohn's disease, and in murine models of acute kidney injury including ischemia/reperfusion injury (IRI). The canonical CAP pathway involves activation of splenic alpha7-nicotinic acetylcholine receptor (α7nAChR)-positive macrophages by splenic ß2-adrenergic receptor-positive CD4+ T cells. Here we demonstrate that ultrasound or vagus nerve stimulation also activated α7nAChR-positive peritoneal macrophages, and that adoptive transfer of these activated peritoneal macrophages reduced IRI in recipient mice. The protective effect required α7nAChR, and did not occur in splenectomized mice or in mice lacking T and B cells, suggesting a bidirectional interaction between α7nAChR-positive peritoneal macrophages and other immune cells including ß2-adrenergic receptor-positive CD4+ T cells. We also found that expression of hairy and enhancer of split-1 (Hes1), a basic helix-loop-helix DNA-binding protein, is induced in peritoneal macrophages by ultrasound or vagus nerve stimulation. Adoptive transfer of Hes1-overexpressing peritoneal macrophages reduced kidney IRI. Our data suggest that Hes1 is downstream of α7nAChR and is important to fully activate the CAP. Taken together, these results suggest that peritoneal macrophages play a previously unrecognized role in mediating the protective effect of CAP activation in kidney injury, and that Hes1 is a new candidate pharmacological target to activate the CAP.


Assuntos
Injúria Renal Aguda/imunologia , Macrófagos Peritoneais/imunologia , Traumatismo por Reperfusão/imunologia , Fatores de Transcrição HES-1/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/terapia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos da radiação , Linfócitos T CD4-Positivos/transplante , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Ativação de Macrófagos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/transplante , Masculino , Camundongos , Neuroimunomodulação/efeitos da radiação , Células RAW 264.7 , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/terapia , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/imunologia , Terapia por Ultrassom , Regulação para Cima/efeitos da radiação , Estimulação do Nervo Vago , Receptor Nicotínico de Acetilcolina alfa7/imunologia
8.
J Bone Miner Metab ; 37(3): 467-474, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30187276

RESUMO

The central nervous system in adult mammals does not heal spontaneously after spinal cord injury (SCI). However, SCI treatment has been improved recently following the development of cell transplantation therapy. We recently reported that fibroblast growth factor (FGF) 2-pretreated human dental pulp cells (hDPCs) can improve recovery in a rat model of SCI. This study aimed to investigate mechanisms underlying the curative effect of SCI enhanced via FGF2 pretreatment; we selected three hDPC lines upon screening for the presence of mesenchymal stem cell markers and of their functionality in a rat model of SCI, as assessed using the Basso, Beattie, and Bresnahan score of locomotor functional scale, electrophysiological tests, and morphological analyses. We identified FGF2-responsive genes via gene expression analyses in these lines. FGF2 treatment upregulated GABRB1, MMP1, and DRD2, which suggested to contribute to SCI or central the nervous system. In an expanded screening of additional lines, GABRB1 displayed rather unique and interesting behavior; two lines with the lowest sensitivity of GABRB1 to FGF2 treatment displayed an extremely minor effect in the SCI model. These findings provide insights into the role of FGF2-responsive genes, especially GABRB1, in recovery from SCI, using hDPCs treated with FGF2.


Assuntos
Polpa Dentária/citologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/fisiopatologia
9.
J Neurosci ; 37(17): 4565-4583, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28363984

RESUMO

Current understanding of the contribution of C1 neurons to blood pressure (BP) regulation derives predominantly from experiments performed in anesthetized animals or reduced ex vivo preparations. Here, we use ArchaerhodopsinT3.0 (ArchT) loss-of-function optogenetics to explore BP regulation by C1 neurons in intact, unanesthetized rats. Using a lentivirus that expresses ArchT under the Phox2b-activated promoter PRSx8 (PRSx8-ArchT), ∼65% of transduced neurons were C1 (balance retrotrapezoid nucleus, RTN). Other rats received CaMKII-ArchT3.0 AAV2 (CaMKII-ArchT), which transduced C1 neurons and larger numbers of unidentified glutamatergic and GABAergic cells. Under anesthesia, ArchT photoactivation reduced sympathetic nerve activity and BP and silenced/strongly inhibited most (7/12) putative C1 neurons. In unanesthetized PRSx8-ArchT-treated rats breathing room air, bilateral ArchT photoactivation caused a very small BP reduction that was only slightly larger under hypercapnia (6% FiCO2), but was greatly enhanced during hypoxia (10 and 12% FiO2), after sino-aortic denervation, or during isoflurane anesthesia. The degree of hypotension correlated with percentage of ArchT-transduced C1 neurons. ArchT photoactivation produced similar BP changes in CaMKII-ArchT-treated rats. Photoactivation in PRSX8-ArchT rats reduced breathing frequency (FR), whereas FR increased in CaMKII-ArchT rats. We conclude that the BP drop elicited by ArchT activation resulted from C1 neuron inhibition and was unrelated to breathing changes. C1 neurons have low activity under normoxia, but their activation is important to BP stability during hypoxia or anesthesia and contributes greatly to the hypertension caused by baroreceptor deafferentation. Finally, C1 neurons are marginally activated by hypercapnia and the large breathing stimulation caused by this stimulus has very little impact on resting BP.SIGNIFICANCE STATEMENT C1 neurons are glutamatergic/peptidergic/catecholaminergic neurons located in the medulla oblongata, which may operate as a switchboard for differential, behavior-appropriate activation of selected sympathetic efferents. Based largely on experimentation in anesthetized or reduced preparations, a rostrally located subset of C1 neurons may contribute to both BP stabilization and dysregulation (hypertension). Here, we used Archaerhodopsin-based loss-of-function optogenetics to explore the contribution of these neurons to BP in conscious rats. The results suggest that C1 neurons contribute little to resting BP under normoxia or hypercapnia, C1 neuron discharge is restrained continuously by arterial baroreceptors, and C1 neuron activation is critical to stabilize BP under hypoxia or anesthesia. This optogenetic approach could also be useful to explore the role of C1 neurons during specific behaviors or in hypertensive models.


Assuntos
Anestesia , Pressão Sanguínea , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Bulbo/fisiopatologia , Pressorreceptores , Anestésicos Inalatórios/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Quimiorreceptoras , Hipercapnia/genética , Hipertensão/fisiopatologia , Isoflurano/farmacologia , Masculino , Neurônios , Optogenética , Ratos , Ratos Sprague-Dawley , Transdução Genética
10.
J Neurosci ; 36(31): 8174-87, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27488637

RESUMO

UNLABELLED: The activity of background potassium and sodium channels determines neuronal excitability, but physiological roles for "leak" Na(+) channels in specific mammalian neurons have not been established. Here, we show that a leak Na(+) channel, Nalcn, is expressed in the CO2/H(+)-sensitive neurons of the mouse retrotrapezoid nucleus (RTN) that regulate breathing. In RTN neurons, Nalcn expression correlated with higher action potential discharge over a more alkalized range of activity; shRNA-mediated depletion of Nalcn hyperpolarized RTN neurons, and reduced leak Na(+) current and firing rate. Nalcn depletion also decreased RTN neuron activation by the neuropeptide, substance P, without affecting pH-sensitive background K(+) currents or activation by a cotransmitter, serotonin. In vivo, RTN-specific knockdown of Nalcn reduced CO2-evoked neuronal activation and breathing; hypoxic hyperventilation was unchanged. Thus, Nalcn regulates RTN neuronal excitability and stimulation by CO2, independent of direct pH sensing, potentially contributing to respiratory effects of Nalcn mutations; transmitter modulation of Nalcn may underlie state-dependent changes in breathing and respiratory chemosensitivity. SIGNIFICANCE STATEMENT: Breathing is an essential, enduring rhythmic motor activity orchestrated by dedicated brainstem circuits that require tonic excitatory drive for their persistent function. A major source of drive is from a group of CO2/H(+)-sensitive neurons in the retrotrapezoid nucleus (RTN), whose ongoing activity is critical for breathing. The ionic mechanisms that support spontaneous activity of RTN neurons are unknown. We show here that Nalcn, a unique channel that generates "leak" sodium currents, regulates excitability and neuromodulation of RTN neurons and CO2-stimulated breathing. Thus, this work defines a specific function for this enigmatic channel in an important physiological context.


Assuntos
Geradores de Padrão Central/fisiologia , Células Quimiorreceptoras/fisiologia , Canais Iônicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mecânica Respiratória/fisiologia , Sódio/metabolismo , Complexo Olivar Superior/fisiologia , Animais , Dióxido de Carbono/metabolismo , Células Cultivadas , Feminino , Ativação do Canal Iônico/fisiologia , Masculino , Proteínas de Membrana , Camundongos
11.
Int J Mol Sci ; 18(6)2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28538701

RESUMO

The neural cell adhesion molecule (NCAM) is modified by polysialic acid (polySia or PSA) in embryonic brains. In adult brains, polySia modification of NCAM is only observed in restricted areas where neural plasticity, remodeling of neural connections, or neural generation is ongoing although the amount of NCAM remains unchanged. Impairments of the polySia-expression and several single nucleotide polymorphisms (SNPs) of the polysialyltransferase (polyST) ST8SIA2 gene are reported to be associated with schizophrenia and bipolar disorder. Chlorpromazine (CPZ) is well-known as an agent for treating schizophrenia, and our hypothesis is that CPZ may affect the polySia expression or the gene expression of polySTs or NCAM. To test this hypothesis, we analyzed the effects of CPZ on the expression of polySia-NCAM on human neuroblastoma cell line, IMR-32 cells, by immunochemical and chemical methods. Interestingly, the cell surface expression of polySia, especially those with lower chain lengths, was significantly increased on the CPZ-treated cells, while mRNAs for polySTs and NCAM, and the amounts of total polySia-NCAM remained unchanged. The addition of brefeldin A, an inhibitor of endocytosis, suppressed the CPZ-induced cell surface polySia expression. In addition, polySia-NCAM was also observed in the vesicle compartment inside the cell. All these data suggest that the level of cell surface expression of polySia in IMR-32 is highly regulated and that CPZ changes the rate of the recycling of polySia-NCAM, leading to the up-regulation of polySia-NCAM on the cell surface. We also analyzed the effect of CPZ on polySia-expression in various brain regions in adult mice and found that CPZ only influenced the total amounts of polySia-NCAM in prefrontal cortex. These results suggest a brain-region-specific effect of CPZ on the expression of total polySia in mouse brain. Collectively, anti-schizophrenia agent CPZ consistently up-regulates the expression polySia at both cellular and animal levels.


Assuntos
Antipsicóticos/farmacologia , Clorpromazina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Esquizofrenia/genética , Ácidos Siálicos/genética , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Moléculas de Adesão de Célula Nervosa/genética , Plasticidade Neuronal/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal/metabolismo , Esquizofrenia/tratamento farmacológico , Sialiltransferases/genética
12.
J Physiol ; 594(12): 3371-90, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26842799

RESUMO

KEY POINTS: Arterial PCO2 is kept constant via breathing adjustments elicited, at least partly, by central chemoreceptors (CCRs) and the carotid bodies (CBs). The CBs may be active in a normal oxygen environment because their removal reduces breathing. Thereafter, breathing slowly returns to normal. In the present study, we investigated whether an increase in the activity of CCRs accounts for this return. One week after CB excision, the hypoxic ventilatory reflex was greatly reduced as expected, whereas ventilation and blood gases at rest under normoxia were normal. Optogenetic inhibition of Phox2b-expressing neurons including the retrotrapezoid nucleus, a cluster of CCRs, reduced breathing proportionally to arterial pH. The hypopnoea was greater after CB excision but only in a normal or hypoxic environment. The difference could be simply explained by the loss of fast feedback from the CBs. We conclude that, in rats, CB denervation may not produce CCR plasticity. We also question whether the transient hypoventilation elicited by CB denervation means that these afferents are active under normoxia. ABSTRACT: Carotid body denervation (CBD) causes hypoventilation and increases the arterial PCO2 set-point; these effects eventually subside. The hypoventilation is attributed to reduced CB afferent activity and the PCO2 set-point recovery to CNS plasticity. In the present study, we investigated whether the retrotrapezoid nucleus (RTN), a group of non-catecholaminergic Phox2b-expressing central respiratory chemoreceptors (CCRs), is the site of such plasticity. We evaluated the contribution of the RTN to breathing frequency (FR ), tidal volume (VT ) and minute volume (VE ) by inhibiting this nucleus optogenetically for 10 s (archaerhodopsinT3.0) in unanaesthetized rats breathing various levels of O2 and/or CO2 . The measurements were made in seven rats before and 6-7 days after CBD and were repeated in seven sham-operated rats. Seven days post-CBD, blood gases and ventilation in 21% O2 were normal, whereas the hypoxic ventilatory reflex was still depressed (95.3%) and hypoxia no longer evoked sighs. Sham surgery had no effect. In normoxia or hypoxia, RTN inhibition produced a more sustained hypopnoea post-CBD than before; in hyperoxia, the responses were identical. Post-CBD, RTN inhibition reduced FR and VE in proportion to arterial pH or PCO2 (ΔVE : 3.3 ± 1.5% resting VE /0.01 pHa). In these rats, 20.7 ± 8.9% of RTN neurons expressed archaerhodopsinT3.0. Hypercapnia (3-6% FiCO2 ) increased FR and VT in CBD rats (n = 4). In conclusion, RTN regulates FR and VE in a pH-dependent manner after CBD, consistent with its postulated CCR function. RTN inhibition produces a more sustained hypopnoea after CBD than before, although this change may simply result from the loss of the fast feedback action of the CBs.


Assuntos
Corpo Carotídeo/fisiologia , Células Quimiorreceptoras/fisiologia , Bulbo/fisiologia , Respiração , Animais , Denervação , Hipercapnia/fisiopatologia , Masculino , Bulbo/citologia , Neurônios/fisiologia , Ratos Sprague-Dawley
13.
Am J Physiol Heart Circ Physiol ; 308(8): H942-50, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25681426

RESUMO

Decreased carotid arterial compliance has been reported in obese subjects and animals. Carotid baroreceptors are located at the bifurcation of the common carotid artery, and respond to distension of the arterial wall, suggesting that higher pressure is required to obtain the same distension in obese subjects and animals. A hyperosmotic NaCl solution induces circulatory volume expansion and arterial pressure (AP) increase, which reflexively augment renal excretion. Thus, we hypothesized that sodium regulation via the baroreflex might be impaired in response to chronic hyperosmotic NaCl infusion in rats fed a high-fat diet. To examine this hypothesis, we used rats fed a high-fat (Fat) or normal (NFD) diet, and measured mean AP, water and sodium balance, and renal function in response to chronic infusion of hyperosmotic NaCl solution via a venous catheter. Furthermore, we examined arterial baroreflex characteristics with static open-loop analysis and distensibility of the common carotid artery. Significant positive water and sodium balance was observed on the 1st day of 9% NaCl infusion; however, this disappeared by the 2nd day in Fat rats. Mean AP was significantly higher during 9% NaCl infusion in Fat rats compared with NFD rats. In the open-loop analysis of carotid sinus baroreflex, a rightward shift of the neural arc was observed in Fat rats compared with NFD rats. Furthermore, distensibility of the common carotid artery was significantly reduced in Fat rats. These results indicate that a reduced baroreceptor distensibility-induced rightward shift of the neural arc might contribute to impairment of sodium regulation in Fat rats.


Assuntos
Barorreflexo , Corpo Carotídeo/fisiologia , Dieta Hiperlipídica/efeitos adversos , Pressorreceptores/fisiologia , Sódio/sangue , Animais , Pressão Sanguínea , Corpo Carotídeo/citologia , Masculino , Pressorreceptores/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sódio/farmacologia
14.
Anesth Analg ; 118(1): 125-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24247228

RESUMO

BACKGROUND: It is thought that the gravitational environment of space exploration alters the effects of anesthetics; however, no evidence has as yet been reported. In the present study, we sought to provide direct evidence showing that hypergravity exposure for 14 days increases anesthetic effects and to examine the possible causes. METHODS: Sprague-Dawley rats were raised in a 3g environment for 14 days. On the day of the experiment, rats were brought out of 3g and rested at 1g for 1 to 2 hours before IV propofol infusion (20 mg/kg, for 5 minutes). Control rats were continuously raised in a 1g environment. The effects of propofol were compared between rats raised in 1g and 3g environment by measuring time taken to induce the burst suppression in an electroencephalogram, nadir of arterial blood pressure, and time taken for the appearance of the righting response to noxious electrical stimulations. The time course of plasma propofol concentrations was also examined. Experiments were also conducted on rats with vestibular lesions to examine whether the vestibular system participated in the observed results. All values were expressed as mean ± SD. RESULTS: In rats raised in 3g environment, the mean time to induce burst suppression in the electroencephalogram was earlier (195.7 ± 15.1 seconds, P = 0.00037), the nadir of mean arterial blood pressure was lower (75.0 ± 15.5 mm Hg, P = 0.019), and mean time for the righting response to appear was later (39.0 ± 8.4 minutes, P < 0.0001) than in rats raised in 1g environment (267.3 ± 29.4 seconds, 100.6 ± 9.1 mm Hg, and 22.0 ± 3.1 minutes, respectively). However, mean time to induce burst suppression and for the righting response to appear did not change in rats with vestibular lesions raised in 3g environment (275 ± 29.4 seconds, 108.7 ± 14.6 mm Hg, and 20.8 ± 2.8 minutes, P = 0.95, 0.73, and 0.98 vs sham-treated rats continuously raised in a 1g environment, respectively). There was no difference between groups in the time course assessment of plasma propofol concentrations. CONCLUSION: The results provide evidence that hypergravity exposure for 14 days increases the effects of propofol. It is suggested that the results were not caused by differences in plasma propofol concentrations but by increased sensitivity, which was mediated via the vestibular system.


Assuntos
Anestésicos Intravenosos/administração & dosagem , Hipergravidade , Propofol/administração & dosagem , Anestésicos Intravenosos/sangue , Animais , Masculino , Propofol/sangue , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Vestíbulo do Labirinto/efeitos dos fármacos , Vestíbulo do Labirinto/fisiologia
15.
PNAS Nexus ; 3(7): pgae280, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39055687

RESUMO

Ultrasound, or sound at frequencies exceeding the conventional range of human hearing, is not only audible to mice, microbats, and dolphins, but also creates an auditory sensation when delivered through bone conduction in humans. Although ultrasound is utilized for brain activation and in hearing aids, the physiological mechanism of ultrasonic hearing remains unknown. In guinea pigs, we found that ultrasound above the hearing range delivered through ossicles of the middle ear evokes an auditory brainstem response and a mechano-electrical transduction current through hair cells, as shown by the local field potential called the cochlear microphonic potential (CM). The CM synchronizes with ultrasound, and like the response to audible sounds is actively and nonlinearly amplified. In vivo optical nano-vibration analysis revealed that the sensory epithelium in the hook region, the basal extreme of the cochlear turns, resonates in response both to ultrasound within the hearing range and to harmonics beyond the hearing range. The results indicate that hair cells can respond to stimulation at the optimal frequency and its harmonics, and the hook region detects ultrasound stimuli with frequencies more than two octaves higher than the upper limit of the ordinary hearing range.

16.
J Physiol Sci ; 74(1): 44, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294564

RESUMO

Gravity has profoundly influenced life on Earth, yet how organisms adapt to changes in gravity remains largely unknown. This study examines vestibular plasticity, specifically how the vestibular system responds to altered gravity. We subjected male C57BL/6J mice to hypergravity (2 G) followed by normal gravity (1 G) to analyze changes in vestibular function and gene expression. Mice showed significant vestibular dysfunction, assessed by righting reflex tests, which persisted for days but reversed at 1 G after exposure to 2 G. Gene expression analysis in the vestibular ganglion identified significant changes in 212 genes out of 49,585 due to gravitational changes. Specifically, 25 genes were upregulated under 2 G and recovered at 1 G after 2 G exposure, while one gene showed the opposite trend. Key neural function genes like Shisa3, Slc25a37, Ntn4, and Snca were involved. Our results reveal that hypergravity-induced vestibular dysfunction is reversible and highlight genes critical for adaptation.


Assuntos
Hipergravidade , Camundongos Endogâmicos C57BL , Vestíbulo do Labirinto , Animais , Masculino , Camundongos , Vestíbulo do Labirinto/metabolismo , Hipergravidade/efeitos adversos , Expressão Gênica/genética , Adaptação Fisiológica/genética , Gravitação
17.
Mol Ther Nucleic Acids ; 33: 960-982, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37727442

RESUMO

A progressive subclass of early-stage non-muscle-invasive bladder cancer (NMIBC) frequently recurs and progress into invasive carcinoma, thus decreasing the overall survival rate of NMIBC. However, therapeutic development for progressive NMIBC has been challenging due to the lack of molecularly validated in vivo models and agents targeting its genetic vulnerability. We herein molecularly characterized an interventional model of progressive NMIBC and revealed the principal functions and therapeutic potential of microRNA-145 (miR-145) in early bladder tumorigenesis. N-butyl-N-(4-hydroxybutyl)nitrosamine-induced premalignant lesions (BiPLs) in rats exhibited downregulated expression of miR-145 as well as highly similar mutation/expression profiles to those of the human progressive NMIBC subclass with the worst prognosis. The expression patterns of miR-145 inversely correlated with those of BC-related oncogenes in BiPLs. We also demonstrated that miR-145 dominantly regulated interferon pathways and c-Myc expression, which play a crucial role in the pathogenesis of progressive NMIBC. Furthermore, we demonstrated that miR-145 replacement with a novel miR-145-based intravesical agent (miR-145S1) significantly inhibited the progression of BiPLs in vivo. These results provide insights into the essential role of miR-145 as the earliest-acting oncogenic driver of bladder tumorigenesis as well as a validated interventional model and novel miR-145-based nucleic acid therapeutic agent for progressive NMIBC.

18.
J Appl Physiol (1985) ; 134(1): 10-17, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395381

RESUMO

The vestibular system is known to participate in controlling posture and metabolism. Different gravitational environments, including microgravity or hypergravity, cause plastic alteration of the vestibular system, and plasticity is important for adaptation to a novel gravitational environment. However, it is unclear whether the degree of change in vestibular-related physiological function depends on gravitational loading. To examine this, we used a hypergravity environment including 1.33 G, 1.67 G, and 2 G for 29 days. We found that a gravitational threshold induces physiological changes, including vestibular-related posture control and metabolism in mice. Body mass did not return to the preloading level in 1.67 G and 2 G mice. A significant drop in food intake, observed on the first day of hypergravity load, disappeared in all mice after longer exposure. However, a reduction in water intake was sustained in 2 G mice but not 1.33 G and 1.67 G mice. Body temperature did not return to the preloading level in 2 G mice by the final day. A decrease in the skill of the righting reflex was observed in 2 G mice but not 1.33 G and 1.67 G mice. In conclusion, this study showed that hypergravity-induced changes in metabolism and vestibular function depended on the amount of gravitational loading. The 2 G load affected vestibular-related posture control and metabolism considerably, compared with 1.33 G and 1.67 G loads.NEW & NOTEWORTHY It is unclear whether the degree of change in vestibular-related physiological function depends on gravitational loading. Present study showed that exposure to hypergravity-induced degrees of change in metabolism and vestibular function depended on the gravitational loading. The response of body mass depended on the gravitational loading size. Especially in 2 G environment, water intake, body temperature, and vestibular function were influenced. These changes could involve plastic alteration of vestibular-related autonomic and motor functions.


Assuntos
Hipergravidade , Vestíbulo do Labirinto , Ausência de Peso , Camundongos , Animais , Vestíbulo do Labirinto/fisiologia , Adaptação Fisiológica , Aclimatação
19.
Commun Biol ; 6(1): 424, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085700

RESUMO

Skeletal muscle is sensitive to gravitational alterations. We recently developed a multiple artificial-gravity research system (MARS), which can generate gravity ranging from microgravity to Earth gravity (1 g) in space. Using the MARS, we studied the effects of three different gravitational levels (microgravity, lunar gravity [1/6 g], and 1 g) on the skeletal muscle mass and myofiber constitution in mice. All mice survived and returned to Earth, and skeletal muscle was collected two days after landing. We observed that microgravity-induced soleus muscle atrophy was prevented by lunar gravity. However, lunar gravity failed to prevent the slow-to-fast myofiber transition in the soleus muscle in space. These results suggest that lunar gravity is enough to maintain proteostasis, but a greater gravitational force is required to prevent the myofiber type transition. Our study proposes that different gravitational thresholds may be required for skeletal muscle adaptation.


Assuntos
Atrofia Muscular , Ausência de Peso , Camundongos , Animais , Atrofia Muscular/prevenção & controle , Músculo Esquelético/fisiologia , Ausência de Peso/efeitos adversos , Lua
20.
J Physiol Sci ; 72(1): 18, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915429

RESUMO

Hypothermia has been observed during hypergravity load in mice and rats. This response is beneficial for maintaining blood glucose level, although food intake decreases. However, saving glucose is not enough to maintain blood glucose level during hypergravity load. In this study, we examined the contribution of humoral factors related to glycolysis in maintaining blood glucose level in a 2 G environment. Increased plasma corticosterone levels were observed in mice with intact peripheral vestibular organs, but not in mice with vestibular lesions. Plasma glucagon levels did not change, and decrease in plasma adrenaline levels was observed in mice with intact peripheral vestibular organs. Accordingly, it is possible that increase in plasma corticosterone level and hypothermia contribute to prevent hypoglycemia in a 2 G environment.


Assuntos
Hiperglicemia , Hipergravidade , Hipotermia , Animais , Glicemia , Corticosterona , Hipergravidade/efeitos adversos , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA