Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Physiol ; 223(1): 27-35, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20020504

RESUMO

The low bone marrow (BM) MSC titers demand a fast ex vivo expansion process to meet the clinically relevant cell dosage. Attending to the low oxygen tension of BM in vivo, we studied the influence of hypoxia on human BM MSC proliferation kinetics and metabolism. Human BM MSC cultured under 2% (hypoxia) and 20% O(2) (normoxia) were characterized in terms of proliferation, cell division kinetics and metabolic patterns. BM MSC cultures under hypoxia displayed an early start of the exponential growth phase, and cell numbers obtained at each time point throughout culture were consistently higher under low O(2), resulting in a higher fold increase after 12 days under hypoxia (40 +/- 10 vs. 30 +/- 6). Cell labeling with PKH26 allowed us to determine that after 2 days of culture, a significant higher cell number was already actively dividing under 2% compared to 20% O(2) and BM MSC expanded under low oxygen tension displayed consistently higher percentages of cells in the latest generations (generations 4-6) until the 5th day of culture. Cells under low O(2) presented higher specific consumption of nutrients, especially early in culture, but with lower specific production of inhibitory metabolites. Moreover, 2% O(2) favored CFU-F expansion, while maintaining BM MSC characteristic immunophenotype and differentiative potential. Our results demonstrated a more efficient BM MSC expansion at 2% O(2), compared to normoxic conditions, associated to an earlier start of cellular division and supported by an increase in cellular metabolism efficiency towards the maximization of cell yield for application in clinical settings.


Assuntos
Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Oxigênio/metabolismo , Amônia/metabolismo , Hipóxia Celular , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Cinética , Ácido Láctico/metabolismo , Modelos Biológicos , Fenótipo
2.
Stem Cell Res ; 9(3): 225-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22903042

RESUMO

Recent studies have described the occurrence of chromosomal abnormalities and mitochondrial dysfunction in human stem/stromal cells (SCs), particularly after extensive passaging in vitro and/or expansion under low oxygen tensions. To deepen this knowledge we investigated the influence of hypoxia (2% O(2)) and prolonged passaging (>P10) of human bone marrow stromal cells (BMSCs) and adipose-derived stromal cells (ASCs) on the expression of genes involved in DNA repair and cell-cycle regulation pathways, as well as on the occurrence of microsatellite instability and changes in telomere length. Our results show that hypoxic conditions induce an immediate and concerted down-regulation of genes involved in DNA repair and damage response pathways (MLH1, RAD51, BRCA1, and Ku80), concomitantly with the occurrence of microsatellite instability while maintaining telomere length. We further searched for mutations occurring in the mitochondrial genome, and monitored changes in intracellular ATP content, membrane potential and mitochondrial DNA content. Hypoxia led to a simultaneous decrease in ATP content and in the number of mitochondrial genomes, whereas the opposite effect was observed after prolonged passaging. Moreover, we show that neither hypoxia nor prolonged passaging significantly affected the integrity of the mitochondrial genome. Ultimately, we present evidence on how hypoxia selectively impacts the cellular response of BMSCs and ASCs, thus pointing for the need to optimize oxygen tension according to the cell source.


Assuntos
Adipócitos/metabolismo , Instabilidade Genômica , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Adipócitos/citologia , Adulto , Técnicas de Cultura de Células , Diferenciação Celular , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Oxigênio/metabolismo , Telômero/metabolismo , Fatores de Tempo
3.
Tissue Eng Part C Methods ; 17(12): 1201-10, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21895491

RESUMO

The immunomodulatory properties of mesenchymal stem cells (MSCs) make them attractive therapeutic agents for a wide range of diseases. However, the highly demanding cell doses used in MSC clinical trials (up to millions of cells/kg patient) currently require labor intensive methods and incur high reagent costs. Moreover, the use of xenogenic (xeno) serum-containing media represents a risk of contamination and raises safety concerns. Bioreactor systems in combination with novel xeno-free medium formulations represent a viable alternative to reproducibly achieve a safe and reliable MSC doses relevant for cell therapy. The main goal of the present study was to develop a complete xeno-free microcarrier-based culture system for the efficient expansion of human MSC from two different sources, human bone marrow (BM), and adipose tissue. After 14 days of culture in spinner flasks, BM MSC reached a maximum cell density of (2.0±0.2)×105 cells·mL⁻¹ (18±1-fold increase), whereas adipose tissue-derived stem cells expanded to (1.4±0.5)×105 cells·mL⁻¹ (14±7-fold increase). After the expansion, MSC expressed the characteristic markers CD73, CD90, and CD105, whereas negative for CD80 and human leukocyte antigen (HLA)-DR. Expanded cells maintained the ability to differentiate robustly into osteoblast, adipocyte, and chondroblast lineages upon directed differentiation. These results demonstrated the feasibility of expanding human MSC in a scalable microcarrier-based stirred culture system under xeno-free conditions and represent an important step forward for the implementation of a Good Manufacturing Practices-compliant large-scale production system of MSC for cellular therapy.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Microesferas , Tecido Adiposo/citologia , Adulto , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/farmacologia , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Plásticos
4.
J Biotechnol ; 146(4): 194-7, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20188771

RESUMO

Bioreactor systems have been developed as alternatives to standard culture flasks due to their homogeneous nature, easiness of monitoring and increased cell production. Here we investigated the in vitro expansion of bone marrow (BM) mesenchymal stem cells (MSC) in spinner flasks, using gelatin microcarriers (Cultispher S) to support cell adhesion and proliferation. MSC expansion was performed using a low-serum containing medium (2% of fetal bovine serum, FBS). A strategy was defined for the maximization of cell expansion: microcarriers were pre-coated with FBS in order to increase cell seeding efficiency and an adequate feeding regime was established (25% medium exchange everyday). The maximum cell density, 4.2 x 10(5)cells/mL, was obtained at day 8, corresponding to a fold increase in total cell number of 8.4+/-0.8. Expanded MSC retained their differentiation potential into adipogenic and osteogenic lineages, as well as their clonogenic ability. Harvested cells expressed >90% of CD73, CD90 and CD105 markers. These results demonstrated that a microcarrier-based stirred culture system is adequate for human MSC expansion, using a low-serum containing medium, allowing the generation of significant cell numbers for potential applications in regenerative medicine.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Meios de Cultura , Células-Tronco Mesenquimais/citologia , Contagem de Células , Técnicas de Cultura de Células/instrumentação , Humanos , Células-Tronco Mesenquimais/metabolismo , Metaboloma
5.
Nat Genet ; 41(1): 106-11, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19043416

RESUMO

Reticular dysgenesis is an autosomal recessive form of human severe combined immunodeficiency characterized by an early differentiation arrest in the myeloid lineage and impaired lymphoid maturation. In addition, affected newborns have bilateral sensorineural deafness. Here we identify biallelic mutations in AK2 (adenylate kinase 2) in seven individuals affected with reticular dysgenesis. These mutations result in absent or strongly decreased protein expression. We then demonstrate that restoration of AK2 expression in the bone marrow cells of individuals with reticular dysgenesis overcomes the neutrophil differentiation arrest, underlining its specific requirement in the development of a restricted set of hematopoietic lineages. Last, we establish that AK2 is specifically expressed in the stria vascularis region of the inner ear, which provides an explanation of the sensorineural deafness in these individuals. These results identify a previously unknown mechanism involved in regulation of hematopoietic cell differentiation and in one of the most severe human immunodeficiency syndromes.


Assuntos
Adenilato Quinase/deficiência , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/enzimologia , Sistema Hematopoético/patologia , Isoenzimas/deficiência , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Orelha Interna/enzimologia , Orelha Interna/patologia , Feminino , Regulação Enzimológica da Expressão Gênica , Perda Auditiva Neurossensorial/genética , Humanos , Recém-Nascido , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Mutação/genética , Neutrófilos/patologia , Linhagem , Transporte Proteico , Imunodeficiência Combinada Severa/complicações , Imunodeficiência Combinada Severa/enzimologia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA