Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 118(1): 3, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639609

RESUMO

Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI.


Assuntos
Infarto do Miocárdio , Fosforilação Oxidativa , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Células Endoteliais/metabolismo , Proteômica , Infarto do Miocárdio/metabolismo , Mitocôndrias/metabolismo , Endotélio/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675188

RESUMO

Human bone marrow mesenchymal stem cell derived-extracellular vesicles (HBMSC-EV) are known for their regenerative and anti-inflammatory effects in animal models of myocardial ischemia. However, it is not known whether the efficacy of the EVs can be modulated by pre-conditioning of HBMSC by exposing them to either starvation or hypoxia prior to EV collection. HBMSC-EVs were isolated following normoxia starvation (NS), normoxia non-starvation (NNS), hypoxia starvation (HS), or hypoxia non-starvation (HNS) pre-conditioning. The HBMSC-EVs were characterized by nanoparticle tracking analysis, electron microscopy, Western blot, and proteomic analysis. Comparative proteomic profiling revealed that starvation pre-conditioning led to a smaller variety of proteins expressed, with the associated lesser effect of normoxia versus hypoxia pre-conditioning. In the absence of starvation, normoxia and hypoxia pre-conditioning led to disparate HBMSC-EV proteomic profiles. HNS HBMSC-EV was found to have the greatest variety of proteins overall, with 74 unique proteins, the greatest number of redox proteins, and pathway analysis suggestive of improved angiogenic properties. Future HBMSC-EV studies in the treatment of cardiovascular disease may achieve the most therapeutic benefits from hypoxia non-starved pre-conditioned HBMSC. This study was limited by the lack of functional and animal models of cardiovascular disease and transcriptomic studies.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Humanos , Doenças Cardiovasculares/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768399

RESUMO

We have previously shown that normoxia serum-starved extracellular vesicle (EV) therapy improves myocardial function, perfusion, and angiogenesis in a swine model of chronic myocardial ischemia. Hypoxia-modified EVs have increased abundance of anti-oxidant, pro-angiogenic, and pro-survival proteins. The purpose of this study is to investigate the differential effects of normoxia serum-starved EVs and hypoxia-modified EVs on myocardial function, perfusion, and microvascular density in chronically ischemic myocardium. Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, the pigs underwent intramyocardial injection of either normoxia serum-starved EVs (NOR, n = 10) or hypoxia-modified EVs (HYP, n = 7). Five weeks later, pigs were euthanized, and ischemic myocardium was harvested. Hypoxia EV treatment was associated with improved contractility compared to NOR, as well as improved capillary density, without changes in arteriolar density. There were trends towards improved perfusion at rest and during pacing in the HYP group compared to NOR. Ischemic myocardium in the HYP group had increased pro-angiogenic Akt and ERK signaling and decreased expression of anti-angiogenic markers compared to the NOR group. In the setting of chronic myocardial ischemia, hypoxia-modified EVs may enhance contractility, capillary density, and angiogenic signaling pathways compared to normoxia serum-starved EVs.


Assuntos
Vesículas Extracelulares , Isquemia Miocárdica , Suínos , Animais , Neovascularização Fisiológica , Circulação Coronária , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Hipóxia/metabolismo , Perfusão , Vesículas Extracelulares/metabolismo , Modelos Animais de Doenças
4.
Am J Physiol Heart Circ Physiol ; 322(6): H891-H905, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35333121

RESUMO

Microvascular disease plays critical roles in the dysfunction of all organ systems, and there are many methods available to assess the microvasculature. These methods can either assess the target organ directly or assess an easily accessible organ such as the skin or retina so that inferences can be extrapolated to the other systems and/or related diseases. Despite the abundance of exploratory research on some of these modalities and their possible applications, there is a general lack of clinical use. This deficiency is likely due to two main reasons: the need for standardization of protocols to establish a role in clinical practice or the lack of therapies targeted toward microvascular dysfunction. Also, there remain some questions to be answered about the coronary microvasculature, as it is complex, heterogeneous, and difficult to visualize in vivo even with advanced imaging technology. This review will discuss novel approaches that are being used to assess microvasculature health in several key organ systems, and evaluate their clinical utility and scope for further development.


Assuntos
Microvasos , Microvasos/diagnóstico por imagem
5.
Am J Physiol Heart Circ Physiol ; 322(5): H819-H841, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35333122

RESUMO

Coronary microvascular disease (CMD), which affects the arterioles and capillary endothelium that regulate myocardial perfusion, is an increasingly recognized source of morbidity and mortality, particularly in the setting of metabolic syndrome. The coronary endothelium plays a pivotal role in maintaining homeostasis, though factors such as diabetes, hypertension, hyperlipidemia, and obesity can contribute to endothelial injury and consequently arteriolar vasomotor dysfunction. These disturbances in the coronary microvasculature clinically manifest as diminished coronary flow reserve, which is a known independent risk factor for cardiac death, even in the absence of macrovascular atherosclerotic disease. Therefore, a growing body of literature has examined the molecular mechanisms by which coronary microvascular injury occurs at the level of the endothelium and the consequences on arteriolar vasomotor responses. This review will begin with an overview of normal coronary microvascular physiology, modalities of measuring coronary microvascular function, and clinical implications of CMD. These introductory topics will be followed by a discussion of recent advances in the understanding of the mechanisms by which inflammation, oxidative stress, insulin resistance, hyperlipidemia, hypertension, shear stress, endothelial cell senescence, and tissue ischemia dysregulate coronary endothelial homeostasis and arteriolar vasomotor function.


Assuntos
Vasos Coronários , Hipertensão , Circulação Coronária , Endotélio Vascular , Humanos , Microcirculação/fisiologia , Microvasos
6.
Proteomics ; 21(10): e2000279, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33860983

RESUMO

While protein-protein interaction is the first step of the SARS-CoV-2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)-based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS-CoV-2-mediated infections in humans. Comparative analysis of cell-lines versus tissue samples indicates that our knowledge in proteome profile alternation in response to SARS-CoV-2 infection is still incomplete and the tissue-specific response to SARS-CoV-2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross-comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K-Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies including all proteomic platforms, suggesting it as a potential future target for SARS-CoV-2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS-CoV-2 responsive age-, gender-dependent, tissue-specific protein targets.


Assuntos
COVID-19/metabolismo , Interações Hospedeiro-Patógeno , Espectrometria de Massas/métodos , Proteômica/métodos , SARS-CoV-2/fisiologia , Animais , COVID-19/diagnóstico , COVID-19/patologia , Humanos , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteínas Quinases/análise , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteoma/metabolismo , Receptor EphA2/análise , Receptor EphA2/metabolismo , Transdução de Sinais
7.
Am J Physiol Heart Circ Physiol ; 320(5): H1999-H2010, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33861149

RESUMO

Cardiovascular disease (CVD) is the leading cause of death globally. Current treatment options include lifestyle changes, medication, and surgical intervention. However, many patients are unsuitable candidates for surgeries due to comorbidities, diffuse coronary artery disease, or advanced stages of heart failure. The search for new treatment options has recently transitioned from cell-based therapies to stem-cell-derived extracellular vesicles (EVs). A number of challenges remain in the EV field, including the effect of comorbidities, characterization, and delivery. However, recent revolutionary developments and insight into the potential of personalizing EV contents by bioengineering methods to alter specific signaling pathways in the ischemic myocardium hold promise. Here, we discuss the past limitations of cell-based therapies and recent EV studies involving in vivo, in vitro, and omics, and future challenges and opportunities in EV-based treatments in CVD.


Assuntos
Vesículas Extracelulares/metabolismo , Insuficiência Cardíaca/metabolismo , Células-Tronco Mesenquimais/metabolismo , Isquemia Miocárdica/metabolismo , Animais , Humanos , Miócitos Cardíacos/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 321(5): H839-H849, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506225

RESUMO

Yorkshire swine were fed standard diet (n = 7) or standard diet containing applesauce rich in caffeic acid with Lactobacillus plantarum (n = 7) for 3 wk. An ameroid constrictor was next placed around the left coronary circumflex artery, and the dietary regimens were continued. At 14 wk, cardiac function, myocardial perfusion, vascular density, and molecular signaling in ischemic myocardium were evaluated. The L. plantarum-applesauce augmented NF-E2-related factor 2 (Nrf2) in the ischemic myocardium and induced Nrf2-regulated antioxidant enzymes heme oxygenase-1 (HO-1), NADPH dehydrogenase quinone 1 (NQO-1), and thioredoxin reductase (TRXR-1). Improved left ventricular diastolic function and decreased myocardial collagen expression were seen in animals receiving the L. plantarum-applesauce supplements. The expression of endothelial nitric oxide synthase (eNOS) was increased in ischemic myocardial tissue of the treatment group, whereas levels of asymmetric dimethyl arginine (ADMA), hypoxia inducible factor 1α (HIF-1α), and phosphorylated MAPK (pMAPK) were decreased. Collateral-dependent myocardial perfusion was unaffected, whereas arteriolar and capillary densities were reduced as determined by α-smooth muscle cell actin and CD31 immunofluorescence in ischemic myocardial tissue. Dietary supplementation with L. plantarum-applesauce is a safe and effective method of enhancing Nrf2-mediated antioxidant signaling cascade in ischemic myocardium. Although this experimental diet was associated with a reduction in hypoxic stimuli, decreased vascular density, and without any change in collateral-dependent perfusion, the net effect of an increase in antioxidant activity and eNOS expression resulted in improvement in diastolic function.NEW & NOTEWORTHY Colonization of the gut microbiome with certain strains of L. Plantarum has been shown to convert caffeic acid readily available in applesauce to 4-vinyl-catechol, a potent activator of the Nrf2 antioxidant defense pathway. In this exciting study, we show that simple dietary supplementation with L. Plantarum-applesauce-mediated Nrf2 activation supports vascular function, ameliorates myocardial ischemic diastolic dysfunction, and upregulates expression of eNOS.


Assuntos
Lactobacillus plantarum/metabolismo , Isquemia Miocárdica/terapia , Miocárdio/enzimologia , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Probióticos , Disfunção Ventricular Esquerda/terapia , Função Ventricular Esquerda , Ração Animal , Animais , Circulação Coronária , Diástole , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Feminino , Fibrose , Heme Oxigenase-1/metabolismo , Masculino , Densidade Microvascular , Isquemia Miocárdica/enzimologia , Isquemia Miocárdica/microbiologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/patologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Sus scrofa , Tiorredoxinas/metabolismo , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/microbiologia , Disfunção Ventricular Esquerda/fisiopatologia
9.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918396

RESUMO

Cardiovascular diseases continue to be the leading cause of death worldwide, with ischemic heart disease as the most significant contributor. Pharmacological and surgical interventions have improved clinical outcomes, but are unable to ameliorate advanced stages of end-heart failure. Successful preclinical studies of new therapeutic modalities aimed at revascularization have shown short lasting to no effects in the clinical practice. This lack of success may be attributed to current challenges in patient selection, endpoint measurements, comorbidities, and delivery systems. Although challenges remain, the field of therapeutic angiogenesis is evolving, as novel strategies and bioengineering approaches emerge to optimize delivery and efficacy. Here, we describe the structure, vascularization, and regulation of the vascular system with particular attention to the endothelium. We proceed to discuss preclinical and clinical findings and present challenges and future prospects in the field.


Assuntos
Isquemia Miocárdica/terapia , Neovascularização Fisiológica , Animais , Ensaios Clínicos como Assunto , Humanos
10.
Circ J ; 80(1): 4-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26489456

RESUMO

Despite many advances in percutaneous and surgical interventions in the treatment of coronary artery disease (CAD), up to one-third of patients are still either not candidates or receive suboptimal revascularization. Calpains are a class of calcium-activated non-lysosomal cysteine proteases that serve as a proteolytic unit for cellular homeostasis. Uncontrolled activation of calpain has been found to be involved in the pathogenesis of myocardial reperfusion injury, cardiac hypertrophy, myocardial stunning and cardiac ischemia. Inhibition of calpains has been shown to significantly attenuate myocardial stunning and reduced infarct size after ischemia-reperfusion. Calpain inhibition therefore serves as a potential medical therapy for patients suffering from a number of diseases, including CAD.


Assuntos
Calpaína/metabolismo , Cardiomegalia/enzimologia , Doença da Artéria Coronariana/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Animais , Cardiomegalia/patologia , Cardiomegalia/terapia , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/terapia , Ativação Enzimática , Humanos , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/terapia
11.
Med Sci (Basel) ; 12(1)2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38249080

RESUMO

Angiogenesis, the process of new blood vessels formation from existing vasculature, plays a vital role in development, wound healing, and various pathophysiological conditions. In recent years, extracellular vesicles (EVs) have emerged as crucial mediators in intercellular communication and have gained significant attention for their role in modulating angiogenic processes. This review explores the multifaceted role of EVs in angiogenesis and their capacity to modulate angiogenic signaling pathways. Through comprehensive analysis of a vast body of literature, this review highlights the potential of utilizing EVs as therapeutic tools to modulate angiogenesis for both physiological and pathological purposes. A good understanding of these concepts holds promise for the development of novel therapeutic interventions targeting angiogenesis-related disorders.


Assuntos
Angiogênese , Vesículas Extracelulares , Transdução de Sinais , Comunicação Celular , Fenômenos Fisiológicos Cardiovasculares
12.
Med Sci (Basel) ; 12(1)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390858

RESUMO

The extracellular matrix (ECM) is a three-dimensional, acellular network of diverse structural and nonstructural proteins embedded within a gel-like ground substance composed of glycosaminoglycans and proteoglycans. The ECM serves numerous roles that vary according to the tissue in which it is situated. In the myocardium, the ECM acts as a collagen-based scaffold that mediates the transmission of contractile signals, provides means for paracrine signaling, and maintains nutritional and immunologic homeostasis. Given this spectrum, it is unsurprising that both the composition and role of the ECM has been found to be modulated in the context of cardiac pathology. Myocardial infarction (MI) provides a familiar example of this; the ECM changes in a way that is characteristic of the progressive phases of post-infarction healing. In recent years, this involvement in infarct pathophysiology has prompted a search for therapeutic targets: if ECM components facilitate healing, then their manipulation may accelerate recovery, or even reverse pre-existing damage. This possibility has been the subject of numerous efforts involving the integration of ECM-based therapies, either derived directly from biologic sources or bioengineered sources, into models of myocardial disease. In this paper, we provide a thorough review of the published literature on the use of the ECM as a novel therapy for ischemic heart disease, with a focus on biologically derived models, of both the whole ECM and the components thereof.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Humanos , Isquemia Miocárdica/terapia , Matriz Extracelular , Infarto do Miocárdio/terapia , Coração , Miocárdio
13.
Bioengineering (Basel) ; 11(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38534492

RESUMO

Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. In particular, patients who suffer from ischemic heart disease (IHD) that is not amenable to surgical or percutaneous revascularization techniques have limited treatment options. Furthermore, after revascularization is successfully implemented, there are a number of pathophysiological changes to the myocardium, including but not limited to ischemia-reperfusion injury, necrosis, altered inflammation, tissue remodeling, and dyskinetic wall motion. Electrospinning, a nanofiber scaffold fabrication technique, has recently emerged as an attractive option as a potential therapeutic platform for the treatment of cardiovascular disease. Electrospun scaffolds made of biocompatible materials have the ability to mimic the native extracellular matrix and are compatible with drug delivery. These inherent properties, combined with ease of customization and a low cost of production, have made electrospun scaffolds an active area of research for the treatment of cardiovascular disease. In this review, we aim to discuss the current state of electrospinning from the fundamentals of scaffold creation to the current role of electrospun materials as both bioengineered extracellular matrices and drug delivery vehicles in the treatment of CVD, with a special emphasis on the potential clinical applications in myocardial ischemia.

14.
Surgery ; 175(2): 265-270, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37940431

RESUMO

BACKGROUND: Inflammation and disruption of cardiac metabolism are prevalent in the setting of myocardial ischemia. Canagliflozin, a sodium-glucose costransporter-2 inhibitor, has beneficial effects on the heart, though the precise mechanisms are unknown. This study investigated the effects of canagliflozin therapy on metabolic pathways and inflammation in ischemic myocardial tissue using a swine model of chronic myocardial ischemia. METHODS: Sixteen Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic ischemia. Two weeks later, pigs received either no drug (n = 8) or 300 mg canagliflozin (n = 8) daily. Five weeks later, pigs underwent terminal harvest and tissue collection. RESULTS: Canagliflozin treatment was associated with a trend toward decreased expression of fatty acid oxidation inhibitor acetyl-CoA carboxylase and decreased phosphorylated/inactivated acetyl-CoA carboxylase, a promotor of fatty acid oxidation, compared with control ischemic myocardium (P = .08, P = .03). There was also a significant modulation in insulin resistance markers p-IRS1, p-PKCα, and phosphoinositide 3-kinase in ischemic myocardium of the canagliflozin group compared with the control group (all P < .05). Canagliflozin treatment was associated with a significant increase in inflammatory markers interleukin 6, interleukin 17, interferon-gamma, and inducible nitric oxide synthase (all P < .05). There was a trend toward decreased expression of the anti-inflammatory cytokines interleukin 10 (P = .16) and interleukin 4 (P = .31) with canagliflozin treatment. CONCLUSION: The beneficial effects of canagliflozin therapy appear to be associated with inhibition of fatty acid oxidation and enhancement of insulin signaling in ischemic myocardium. Interestingly, canagliflozin appears to increase the levels of several inflammatory markers, but further studies are required to better understand how canagliflozin modulates inflammatory signaling pathways.


Assuntos
Isquemia Miocárdica , Inibidores do Transportador 2 de Sódio-Glicose , Simportadores , Suínos , Animais , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Canagliflozina/metabolismo , Miocárdio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Acetil-CoA Carboxilase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Inflamação/metabolismo , Glucose/metabolismo , Simportadores/metabolismo , Ácidos Graxos/metabolismo , Modelos Animais de Doenças
15.
Methods Protoc ; 7(1)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38392691

RESUMO

The past several decades have borne witness to several breakthroughs and paradigm shifts within the field of cardiovascular medicine, but one component that has remained constant throughout this time is the need for accurate animal models for the refinement and elaboration of the hypotheses and therapies crucial to our capacity to combat human disease. Numerous sophisticated and high-throughput molecular strategies have emerged, including rational drug design and the multi-omics approaches that allow extensive characterization of the host response to disease states and their prospective resolutions, but these technologies all require grounding within a faithful representation of their clinical context. Over this period, our lab has exhaustively tested, progressively refined, and extensively contributed to cardiovascular discovery on the basis of one such faithful representation. It is the purpose of this paper to review our porcine model of chronic myocardial ischemia using ameroid constriction and the subsequent myriad of physiological and molecular-biological insights it has allowed our lab to attain and describe. We hope that, by depicting our methods and the insight they have yielded clearly and completely-drawing for this purpose on comprehensive videographic illustration-other research teams will be empowered to carry our work forward, drawing on our experience to refine their own investigations into the pathogenesis and eradication of cardiovascular disease.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38879117

RESUMO

INTRODUCTION: Sodium-glucose cotransporter-2 (SGLT-2) inhibitors are antidiabetic medications that have been shown to decrease cardiovascular events and heart failure-related mortality in clinical studies. We attempt to examine the complex interplay between metabolic syndrome (MS) and the SGLT-2 inhibitor canagliflozin (CAN) in a clinically relevant model of chronic myocardial ischemia (CMI). METHODS: Twenty-one Yorkshire swine were fed a high-fat diet starting at six weeks of age to induce MS. At 11 weeks, all underwent placement of an ameroid constrictor around the left circumflex coronary artery to induce CMI. After two weeks, swine received either control (CON, n=11) or CAN 300 mg PO daily (n=10) for 5 weeks, whereupon all underwent terminal harvest. RESULTS: There was a significant increase in cardiac output and heart rate with a decrease in pulse pressure in the CAN group compared to CON (all p<0.05). The CAN group had a significant increase in capillary density (p=0.02). Interestingly, there was no change in myocardial perfusion or arteriolar density. CAN induced a significant increase in markers of angiogenesis, including p-eNOS, eNOS, VEGFR1, HSP70, and ERK (all p<0.05), plausibly resulting in capillary angiogenesis. CONCLUSIONS: CAN treatment leads to a significant increase in capillary density and augmented cardiac function in a swine model of CMI in the setting of MS. This work further elucidates the mechanism of SGLT-2 inhibitors in patients with cardiac disease; however, more studies are needed to determine if this increase in capillary density plays a role in the improvements seen in clinical studies.

17.
Physiol Rep ; 12(5): e15976, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472161

RESUMO

Small animal models have shown improved cardiac function with DPP-4 inhibition, but many human studies have shown worse outcomes or no benefit. We seek to bridge the gap by studying the DPP-4 inhibitor sitagliptin in a swine model of chronic myocardial ischemia using proteomic analysis. Thirteen Yorkshire swine underwent the placement of an ameroid constrictor on the left coronary circumflex artery to model chronic myocardial ischemia. Two weeks post-op, swine received either sitagliptin 100 mg daily (SIT, n = 5) or no drug (CON, n = 8). After 5 weeks of treatment, swine underwent functional measurements and tissue harvest. In the SIT group compared to CON, there was a trend towards decreased cardiac index (p = 0.06). The non-ischemic and ischemic myocardium had 396 and 166 significantly decreased proteins, respectively, in the SIT group compared to CON (all p < 0.01). This included proteins involved in fatty acid oxidation (FAO), myocardial contraction, and oxidative phosphorylation (OXPHOS). Sitagliptin treatment resulted in a trend towards decreased cardiac index and decreased expression of proteins involved in OXPHOS, FAO, and myocardial contraction in both ischemic and non-ischemic swine myocardium. These metabolic and functional changes may provide some mechanistic evidence for outcomes seen in clinical studies.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Isquemia Miocárdica , Suínos , Humanos , Animais , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Proteoma/metabolismo , Fosforilação Oxidativa , Fosfato de Sitagliptina/uso terapêutico , Proteômica/métodos , Miocárdio/metabolismo , Hipoglicemiantes/uso terapêutico , Modelos Animais de Doenças
18.
Bioengineering (Basel) ; 11(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38391611

RESUMO

INTRODUCTION: Patients with advanced coronary artery disease (CAD) who are not eligible for stenting or surgical bypass procedures have limited treatment options. Extracellular vesicles (EVs) have emerged as a potential therapeutic target for the treatment of advanced CAD. These EVs can be conditioned to modify their contents. In our previous research, we demonstrated increased perfusion, decreased inflammation, and reduced apoptosis with intramyocardial injection of hypoxia-conditioned EVs (HEVs). The goal of this study is to further understand the function of HEVs by examining their impact on oxidative stress using our clinically relevant and extensively validated swine model of chronic myocardial ischemia. METHODS: Fourteen Yorkshire swine underwent a left thoracotomy for the placement of an ameroid constrictor on the left circumflex coronary artery to model chronic myocardial ischemia. After two weeks of recovery, the swine underwent a redo thoracotomy with injection of either HEVs (n = 7) or a saline control (CON, n = 7) into the ischemic myocardium. Five weeks after injection, the swine were subjected to terminal harvest. Protein expression was measured using immunoblotting. OxyBlot analysis and 3-nitrotyrosine staining were used to quantify total oxidative stress. RESULTS: There was a significant increase in myocardial expression of the antioxidants SOD 2, GPX-1, HSF-1, UCP-2, catalase, and HO-1 (all p ≤ 0.05) in the HEV group when compared to control animals. The HEVs also exhibited a significant increase in pro-oxidant NADPH oxidase (NOX) 1, NOX 3, p47phox, and p67phox (all p ≤ 0.05). However, no change was observed in the expression of NFkB, KEAP 1, and PRDX1 (all p > 0.05) between the HEV and CON groups. There were no significant differences in total oxidative stress as determined by OxyBlot and 3-nitrotyrosine staining (p = 0.64, p = 0.32) between the groups. CONCLUSIONS: Administration of HEVs in ischemic myocardium induces a significant increase in pro- and antioxidant proteins without a net change in total oxidative stress. These findings suggest that HEV-induced changes in redox signaling pathways may play a role in increased perfusion, decreased inflammation, and reduced apoptosis in ischemic myocardium. Further studies are required to determine if HEVs alter the net oxidative stress in ischemic myocardium at an earlier time point of HEV administration.

19.
Biomedicines ; 12(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540200

RESUMO

BACKGROUND: Sodium-glucose cotransporter-2 (SGLT2) inhibitors are known to be cardioprotective independent of glucose control, but the mechanisms of these benefits are unclear. We previously demonstrated improved cardiac function and decreased fibrosis in a swine model of chronic myocardial ischemia. The goal of this study is to use high-sensitivity proteomic analyses to characterize specific molecular pathways affected by SGLT-2 inhibitor canagliflozin (CAN) therapy in a swine model of chronic myocardial ischemia. METHODS: Chronic myocardial ischemia was induced in sixteen Yorkshire swine via the placement of an ameroid constrictor to the left circumflex coronary artery. After two weeks of recovery, swine received either 300 mg of CAN daily (n = 8) or a control (n = 8). After five weeks of therapy, the group of swine were euthanized, and left ventricular tissue was harvested and sent for proteomic analysis. RESULTS: Total proteomic analysis identified a total of 3256 proteins between the CAN and control groups. Three hundred and five proteins were statistically different. This included 55 proteins that were downregulated (p < 0.05, fold change <0.5) and 250 that were upregulated (p < 0.05, fold change >2) with CAN treatment. Pathway analysis demonstrated the upregulation of several proteins involved in metabolism and redox activity in the CAN-treated group. The CAN group also exhibited a downregulation of proteins involved in motor activity and cytoskeletal structure. CONCLUSIONS: In our swine model of chronic myocardial ischemia, CAN therapy alters several proteins involved in critical molecular pathways, including redox regulation and metabolism. These findings provide additional mechanistic insights into the cardioprotective effects of canagliflozin.

20.
J Am Coll Surg ; 238(6): 1045-1055, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38288953

RESUMO

BACKGROUND: Although sodium-glucose cotransporter-2 inhibitors have been shown to improve cardiovascular outcomes in general, little is presently known about any sex-specific changes that may result from this therapy. We sought to investigate and quantify potential sex-specific changes seen with the sodium-glucose cotransporter-2 inhibitor canagliflozin (CAN) in a swine model of chronic myocardial ischemia. STUDY DESIGN: Eighteen Yorkshire swine underwent left thoracotomy with placement of an ameroid constrictor. Two weeks postop, swine were assigned to receive either control (F = 5 and M = 5) or CAN 300 mg daily (F = 4 and M = 4). After 5 weeks of therapy, swine underwent myocardial functional measurements, and myocardial tissue was sent for proteomic analysis. RESULTS: Functional measurements showed increased cardiac output, stroke volume, ejection fraction, and ischemic myocardial flow at rest in male swine treated with CAN compared with control male swine (all p < 0.05). The female swine treated with CAN had no change in cardiac function as compared with control female swine. Proteomic analysis demonstrated 6 upregulated and 97 downregulated proteins in the CAN female group compared with the control female group. Pathway analysis showed decreases in proteins in the tricarboxylic acidic cycle. The CAN male group had 639 upregulated and 172 downregulated proteins compared with control male group. Pathway analysis showed increases in pathways related to cellular metabolism and decreases in pathways relevant to the development of cardiomyopathy and to oxidative phosphorylation. CONCLUSIONS: Male swine treated with CAN had significant improvements in cardiac function that were not observed in female swine treated with CAN. Moreover, CAN treatment in male swine was associated with significantly more changes in protein expression than in female swine treated with CAN. The increased proteomic changes seen in the CAN male group likely contributed to the more robust changes in cardiac function seen in male swine treated with CAN.


Assuntos
Canagliflozina , Isquemia Miocárdica , Proteômica , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Feminino , Masculino , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Isquemia Miocárdica/metabolismo , Suínos , Fatores Sexuais , Modelos Animais de Doenças , Miocárdio/metabolismo , Doença Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA