RESUMO
The agricultural industry is rapidly accepting daily changes and updates, and expanding to meet the basic demands of humanity. The main objective of modern agricultural practices is high profits with minimal investment, without upsetting any other form of life or abiotic factors. According to this principle, nanofertilizers are recommended for use in agriculture and are classified in different ways based on their nutritive value, functional role in the environment, chemical composition, and form of application to ensure their persistent availability in the required quantities. These nanofertilizers meet the global crop nutrient requirement of 191.8 million metric tons along with multitudes of added value, and which are highly endorsed in the agricultural field compared to other chemical fertilizers, or their usage can be reduced to less than 50% by the use of nanofertilizers. In this review, we discuss different types of nanofertilizers, their effects on crop yield, stress tolerance, and their impact on the environment. Furthermore, the different types of nanofertilizer delivery, modes of action, and toxic impacts of nanofertilizers have been discussed. Although a large number of commercially successful effects of nanofertilizers have been demonstrated, the effects of biomagnification and cellular transformation are still disputed. The effect of the biomagnification of nanofertilizers remains unclear. A suitable strategy must be developed to easily recycle nanofertilizers. It is the need of the hour to accept the use of nanofertilizers in parallel to addressing this issue.