Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Lipids Health Dis ; 23(1): 54, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388929

RESUMO

BACKGROUND: Dyslipidemias, including familial hypercholesterolemia (FH), are a significant risk factor for cardiovascular diseases. FH is a genetic disorder resulting in elevated levels of low-density lipoprotein cholesterol (LDL-C) and an increased probability of early cardiovascular disorders. Heterozygous familial hypercholesterolemia (HeFH) is the most common form, affecting approximately 1 in 250 individuals worldwide, with a higher prevalence among the French-Canadian population. Childhood is a critical period for screening risk factors, but the recommendation for non-fasting screening remains controversial due to a lack of specific reference values for this state. This study aims to establish reference values for lipid levels in non-fasting children from Sherbrooke, Quebec, Canada, that will be specific for sex, age, and pubertal stages. METHODS: Blood samples and corresponding anthropometric data were collected from 356 healthy children aged from 6 to 13. They were categorized either into two age groups: Cohort 6-8 and Cohort 9-13, or into pubertal stages. Reference values, specifically the 2.5th, 5th, 10th, 50th, 90th, 95th, and 97.5th percentiles were determined using the CLSI C28-A3 guidelines. RESULTS: Lipid profiles did not significantly differ between sexes, except for higher levels of high-density lipoprotein (HDL-C) in boys within Cohort 6-8. HDL-C levels significantly increased, while LDL-C and non-HDL-C levels significantly decreased in both sexes with age. Non-fasting age- and pubertal stages-specific reference values were established. CONCLUSION: This study established reference intervals for lipid markers in non-fasting state within the pediatric French-Canadian population. These findings could be used in dyslipidemia screening in daily practice.


Assuntos
Dislipidemias , Hiperlipoproteinemia Tipo II , Masculino , Feminino , Humanos , Criança , LDL-Colesterol , Valores de Referência , Canadá/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Puberdade , HDL-Colesterol
2.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142726

RESUMO

Fragile X Syndrome (FXS) is the most prevalent monogenic cause of Autism Spectrum Disorders (ASDs). Despite a common genetic etiology, the affected individuals display heterogenous metabolic abnormalities including hypocholesterolemia. Although changes in the metabolism of fatty acids (FAs) have been reported in various neuropsychiatric disorders, it has not been explored in humans with FXS. In this study, we investigated the FA profiles of two different groups: (1) an Argentinian group, including FXS individuals and age- and sex-matched controls, and (2) a French-Canadian group, including FXS individuals and their age- and sex-matched controls. Since phospholipid FAs are an indicator of medium-term diet and endogenous metabolism, we quantified the FA profile in plasma phospholipids using gas chromatography. Our results showed significantly lower levels in various plasma FAs including saturated, monosaturated, ω-6 polyunsaturated, and ω-3 polyunsaturated FAs in FXS individuals compared to the controls. A decrease in the EPA/ALA (eicosapentaenoic acid/alpha linoleic acid) ratio and an increase in the DPA/EPA (docosapentaenoic acid/eicosapentaenoic acid) ratio suggest an alteration associated with desaturase and elongase activity, respectively. We conclude that FXS individuals present an abnormal profile of FAs, specifically FAs belonging to the ω-3 family, that might open new avenues of treatment to improve core symptoms of the disorder.


Assuntos
Ácidos Graxos Ômega-3 , Síndrome do Cromossomo X Frágil , Canadá , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos , Ácidos Graxos , Humanos , Ácido Linoleico , Fosfolipídeos
3.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830242

RESUMO

Vitamin D deficiency is associated with poor mental health and dysmetabolism. Several metabolic abnormalities are associated with psychotic diseases, which can be compounded by atypical antipsychotics that induce weight gain and insulin resistance. These side-effects may be affected by vitamin D levels. The gut microbiota and endocannabinoidome (eCBome) are significant regulators of both metabolism and mental health, but their role in the development of atypical antipsychotic drug metabolic side-effects and their interaction with vitamin D status is unknown. We studied the effects of different combinations of vitamin D levels and atypical antipsychotic drug (olanzapine) exposure on whole-body metabolism and the eCBome-gut microbiota axis in female C57BL/6J mice under a high fat/high sucrose (HFHS) diet in an attempt to identify a link between the latter and the different metabolic outputs induced by the treatments. Olanzapine exerted a protective effect against diet-induced obesity and insulin resistance, largely independent of dietary vitamin D status. These changes were concomitant with olanzapine-mediated decreases in Trpv1 expression and increases in the levels of its agonists, including various N-acylethanolamines and 2-monoacylglycerols, which are consistent with the observed improvement in adiposity and metabolic status. Furthermore, while global gut bacteria community architecture was not altered by olanzapine, we identified changes in the relative abundances of various commensal bacterial families. Taken together, changes of eCBome and gut microbiota families under our experimental conditions might contribute to olanzapine and vitamin D-mediated inhibition of weight gain in mice on a HFHS diet.


Assuntos
Antipsicóticos/farmacologia , Endocanabinoides/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Olanzapina/farmacologia , Vitamina D/farmacologia , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Etanolaminas/metabolismo , Feminino , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Aumento de Peso/efeitos dos fármacos
4.
Psychiatry Res ; 337: 115962, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763080

RESUMO

Fragile X Syndrome (FXS) results from the silencing of the FMR1 gene and is the most prevalent inherited cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorder. It is well established that Fragile X individuals are subjected to a wide array of comorbidities, ranging from cognitive, behavioural, and medical origin. Furthermore, recent studies have also described metabolic impairments in FXS individuals. However, the molecular mechanisms linking FMRP deficiency to improper metabolism are still misunderstood. The endocannabinoidome (eCBome) is a lipid-based signalling system that regulates several functions across the body, ranging from cognition, behaviour and metabolism. Alterations in the eCBome have been described in FXS animal models and linked to neuronal hyperexcitability, a core deficit of the disease. However, the potential link between dysregulation of the eCBome and altered metabolism observed in FXS remains unexplored. As such, this review aims to overcome this issue by describing the most recent finding related to eCBome and metabolic dysfunctions in the context of FXS. A better comprehension of this association will help deepen our understanding of FXS pathophysiology and pave the way for future therapeutic interventions.


Assuntos
Endocanabinoides , Síndrome do Cromossomo X Frágil , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Humanos , Endocanabinoides/metabolismo , Animais , Redes e Vias Metabólicas , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
5.
EMBO Mol Med ; 15(3): e16225, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36594243

RESUMO

Nothing is known about the potential implication of gut microbiota in skeletal muscle disorders. Here, we provide evidence that fecal microbiota composition along with circulating levels of short-chain fatty acids (SCFAs) and related metabolites are altered in the mdx mouse model of Duchenne muscular dystrophy (DMD) compared with healthy controls. Supplementation with sodium butyrate (NaB) in mdx mice rescued muscle strength and autophagy, and prevented inflammation associated with excessive endocannabinoid signaling at CB1 receptors to the same extent as deflazacort (DFZ), the standard palliative care for DMD. In LPS-stimulated C2C12 myoblasts, NaB reduces inflammation, promotes autophagy, and prevents dysregulation of microRNAs targeting the endocannabinoid CB1 receptor gene, in a manner depending on the activation of GPR109A and PPARγ receptors. In sum, we propose a novel disease-modifying approach in DMD that may have benefits also in other muscular dystrophies.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Autofagia , Disbiose , Endocanabinoides/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Intestinos
6.
Br J Pharmacol ; 180(6): 721-739, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36316276

RESUMO

BACKGROUND AND PURPOSE: Psychedelics elicit prosocial, antidepressant and anxiolytic effects via neuroplasticity, neurotransmission and neuro-immunomodulatory mechanisms. Whether psychedelics affect the brain endocannabinoid system and its extended version, the endocannabinoidome (eCBome) or the gut microbiome, remains unknown. EXPERIMENTAL APPROACH: Adult C57BL/6N male mice were administered lysergic acid diethylamide (LSD) or saline for 7 days. Sociability was assessed in the direct social interaction and three chambers tests. Prefrontal cortex and hippocampal endocannabinoids, endocannabinoid-like mediators and metabolites were quantified via high-pressure liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Neurotransmitter levels were assessed via HPLC-UV/fluorescence. Gut microbiome changes were investigated by 16S ribosomal DNA sequencing. KEY RESULTS: LSD increased social preference and novelty and decreased hippocampal levels of the N-acylethanolamines N-linoleoylethanolamine (LEA), anandamide (N-arachidonoylethanolamine) and N-docosahexaenoylethanolamine (DHEA); the monoacylglycerol 1/2-docosahexaenoylglycerol (1/2-DHG); the prostaglandins D2 (PGD2 ) and F2α (PGF2α ); thromboxane 2 and kynurenine. Prefrontal eCBome mediator and metabolite levels were less affected by the treatment. LSD decreased Shannon alpha diversity of the gut microbiota, prevented the decrease in the Firmicutes:Bacteroidetes ratio observed in saline-treated mice and altered the relative abundance of the bacterial taxa Bifidobacterium, Ileibacterium, Dubosiella and Rikenellaceae RC9. CONCLUSIONS AND IMPLICATIONS: The prosocial effects elicited by repeated LSD administration are accompanied by alterations of hippocampal eCBome and kynurenine levels, and the composition of the gut microbiota. Modulation of the hippocampal eCBome and kynurenine pathway might represent a mechanism by which psychedelic compounds elicit prosocial effects and affect the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Alucinógenos , Masculino , Animais , Camundongos , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/farmacologia , Endocanabinoides , Espectrometria de Massas em Tandem/métodos , Cinurenina , Camundongos Endogâmicos C57BL , Encéfalo
7.
J Steroid Biochem Mol Biol ; 235: 106408, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806531

RESUMO

Accurate quantification of 24(S)-hydroxycholesterol and 27-hydroxycholesterol holds substantial biological significance due to their involvement in pivotal cellular processes, encompassing cholesterol homeostasis, inflammatory responses, neuronal signaling, and their potential as disease biomarkers. The plasma determination of these oxysterols is challenging considering their low concentrations and similarities in terms of empirical formulae, molecular structure, and physicochemical properties across all human endogenous plasma oxysterols. To overcome these sensitivity and specificity issues, we developed and validated a quantification method using liquid chromatography coupled to a tandem mass spectrometry instrument. Validation studies were designed inspired by Clinical and Laboratory Standards Institute (CLSI) C62-A Guidelines. The linearity ranged between 20 and 300 nM for both oxysterols with limits of quantification at 20 nM and 30 nM for 24(S)-OHC and 27-OHC, respectively. Inter-day precision coefficient variations (CV) were lower than 10% for both oxysterols. An optimal separation of 25-OHC was obtained from 24(S)-OHC and 27-OHC with a resolution (Rs) > 1.25. The determination and validation of ion ratios for 24(S)-OHC and 27-OHC enabled another quality check in identifying interferents that could impact the quantification. Our developed and validated LC-MS/MS method allows consistent and reliable quantification of human plasmatic 24(S)-OHC and 27-OHC that is warranted in fundamental and clinical research projects.


Assuntos
Hidroxicolesteróis , Oxisteróis , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
8.
Sci Rep ; 12(1): 2936, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190617

RESUMO

Fragile X syndrome (FXS) is the most prevalent monogenic cause of intellectual disability and autism spectrum disorder (ASD). Affected individuals have a high prevalence of hypocholesterolemia, however, the underlying mechanisms and the clinical significance remains unknown. We hypothesized that decrease in the plasma cholesterol levels is associated with an alteration of cholesterol content within the lipid rafts (LRs) which ultimately affects the clinical profile of FXS individuals. The platelets LRs were isolated by ultracentrifugation on sucrose gradient from 27 FXS and 25 healthy controls, followed by measurements of proteins, cholesterol, and gangliosides content. Autistic and adaptive behaviour of affected individuals were respectively assessed by the Social Communication Questionnaire and Adaptive Behavior Assessment System. Our results suggest a decrease in the cholesterol content of LRs in FXS individuals as compared to controls. As opposed to controls, LR cholesterol was significantly associated with plasma total cholesterol (r = 0.47; p = 0.042) in the FXS group. Furthermore, the correlation between LRs cholesterol and the clinical profile showed a significant association with autistic traits (r = - 0.67; p < 0.001) and adaptative behavior (r = 0.70; p < 0.001). These results support the clinical significance of LR cholesterol alterations in FXS. Further studies are warranted to investigate the implication of LRs in FXS pathophysiology and ASD.


Assuntos
Plaquetas/metabolismo , Colesterol/sangue , Colesterol/deficiência , Síndrome do Cromossomo X Frágil/sangue , Síndrome do Cromossomo X Frágil/etiologia , Microdomínios da Membrana/metabolismo , Adaptação Psicológica , Transtorno do Espectro Autista/etiologia , Colesterol/metabolismo , Síndrome do Cromossomo X Frágil/psicologia , Humanos , Deficiência Intelectual/etiologia , Inquéritos e Questionários
9.
Sci Rep ; 12(1): 15386, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100610

RESUMO

High plasma matrix metalloproteases-9 (MMP-9) levels have been reported in Fragile X Syndrome in a limited number of animal and human studies. Since the results obtained are method-dependent and not directly comparable, the clinical utility of MMP-9 measurement in FXS remains unclear. This study aimed to compare quantitative gel zymography and ELISA and to determine which method better discriminates abnormal MMP-9 levels of individuals with FXS from healthy controls and correlates with the clinical profile. The active and total forms of MMP-9 were quantified respectively, by gel zymography and ELISA in a cohort of FXS (n = 23) and healthy controls (n = 20). The clinical profile was assessed for the FXS group using the Aberrant Behavior Checklist FXS adapted version (ABC-CFX), Adaptive Behavior Assessment System (ABAS), Social Communication Questionnaire (SCQ), and Anxiety Depression and Mood Scale questionnaires. Method comparison showed a disagreement between gel zymography and ELISA with a constant error of - 0.18 [95% CI: - 0.35 to - 0.02] and a proportional error of 2.31 [95% CI: 1.53 to 3.24]. Plasma level of MMP-9 active form was significantly higher in FXS (n = 12) as compared to their age-sex and BMI matched controls (n = 12) (p = 0.039) and correlated with ABC-CFX (rs = 0.60; p = 0.039) and ADAMS (rs = 0.57; p = 0.043) scores. As compared to the plasma total form, the plasma MMP-9 active form better enables the discrimination of individuals with FXS from controls and correlates with the clinical profile. Our results highlight the importance of choosing the appropriate method to quantify plasma MMP-9 in future FXS clinical studies.


Assuntos
Síndrome do Cromossomo X Frágil , Metaloproteinase 9 da Matriz/metabolismo , Animais , Lista de Checagem , Comunicação , Humanos , Inquéritos e Questionários
10.
Geroscience ; 43(4): 1783-1798, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33650014

RESUMO

To evaluate whether a peculiar plasma profile of fatty acids and endocannabinoidome (eCBome)-related mediators may be associated to longevity, we assessed them in octogenarians (Old; n=42) living in the east-central mountain area of Sardinia, a High-Longevity Zone (HLZ), compared to sexagenarian (Young; n=21) subjects from the same area, and to Olds (n=22) from the Northern Sardinia indicated as Lower-Longevity Zone (LLZ). We found significant increases in conjugated linoleic acid (CLA) and heptadecanoic acid (17:0) levels in Old-HLZ with respect to younger subjects and Old-LLZ subjects. Young-HLZ subjects exhibited higher circulating levels of pentadecanoic acid (15:0) and retinol. Palmitoleic acid (POA) was elevated in both Young and Old subjects from the HLZ. eCBome profile showed a significantly increased plasma level of the two endocannabinoids, N-arachidonoyl-ethanolamine (AEA) and 2-arachidonoyl-glycerol (2-AG) in Old-HLZ subjects compared to Young-HLZ and Old-LLZ respectively. In addition, we found increased N-oleoyl-ethanolamine (OEA), 2-linoleoyl-glycerol (2-LG) and 2-oleoyl-glycerol (2-OG) levels in Old-HLZ group with respect to Young-HLZ (as for OEA an d 2-LG) and both the Old-LLZ and Young-HLZ for 2-OG. The endogenous metabolite of docosahexaenoic acid (DHA), N-docosahexaenoyl-ethanolamine (DHEA) was significantly increased in Old-HLZ subjects. In conclusion, our results suggest that in the HLZ area, Young and Old subjects exhibited a favourable, albeit distinctive, fatty acids and eCBome profile that may be indicative of a metabolic pattern potentially protective from adverse chronic conditions. These factors could point to a suitable physiological metabolic pattern that may counteract the adverse stimuli leading to age-related disorders such as neurodegenerative and metabolic diseases.


Assuntos
Ácidos Graxos , Longevidade , Idoso de 80 Anos ou mais , Etanolamina , Etanolaminas , Humanos , Itália , Ácidos Oleicos
11.
Nutrients ; 13(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671938

RESUMO

We investigated the influence of different dietary formulation of n-3 polyunsaturated fatty acids (PUFA) on rat tissue fatty acid (FA) incorporation and consequent modulation of their bioactive metabolite N-acylethanolamines (NAE). For 10 weeks, rats were fed diets with 12% of fat from milk + 4% soybean oil and 4% of oils with different n-3 PUFA species: soybean oil as control, linseed oil rich in α-linolenic (ALA), Buglossoides arvensis oil rich in ALA and stearidonic acid (SDA), fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), Nannochloropsis microalga oil rich in EPA or Schizochytrium microalga oil rich in DHA. FA and NAE profiles were determined in plasma, liver, brain and adipose tissues. Different dietary n-3 PUFA distinctively influenced tissue FA profiles and consequently NAE tissue concentrations. Interestingly, in visceral adipose tissue the levels of N-arachidonoylethanolamide (AEA) and N-docosahexaenoylethanolamide (DHEA), NAE derived from arachidonic acid (AA) and DHA, respectively, significantly correlated with NAE in plasma, and circulating DHEA levels were also correlated with those in liver and brain. Circulating NAE derived from stearic acid, stearoylethanolamide (SEA), palmitic acid and palmitoylethanolamide (PEA) correlated with their liver concentrations. Our data indicate that dietary n-3 PUFA are not all the same in terms of altering tissue FA and NAE concentrations. In addition, correlation analyses suggest that NAE levels in plasma may reflect their concentration in specific tissues. Given the receptor-mediated tissue specific metabolic role of each NAE, a personalized formulation of dietary n-3 PUFA might potentially produce tailored metabolic effects in different pathophysiological conditions.


Assuntos
Etanolaminas/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos/metabolismo , Alimentos Formulados/análise , Tecido Adiposo/metabolismo , Animais , Encéfalo/metabolismo , Óleos de Peixe/farmacologia , Fígado/metabolismo , Óleos de Plantas/farmacologia , Plasma/química , Ratos
12.
Cells ; 9(12)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348740

RESUMO

Monoglyceride lipase (MGLL) regulates metabolism by catabolizing monoacylglycerols (MAGs), including the endocannabinoid 2-arachidonoyl glycerol (2-AG) and some of its bioactive congeners, to the corresponding free fatty acids. Mgll knockout mice (Mgll-/-) exhibit elevated tissue levels of MAGs in association with resistance to the metabolic and cardiovascular perturbations induced by a high fat diet (HFD). The gut microbiome and its metabolic function are disrupted in obesity in a manner modulated by 2-arachidonoyl glycerol (2-AG's) main receptors, the cannabinoid CB1 receptors. We therefore hypothesized that Mgll-/- mice have an altered microbiome, that responds differently to diet-induced obesity from that of wild-type (WT) mice. We subjected mice to HFD and assessed changes in the microbiomes after 8 and 22 weeks. As expected, Mgll-/- mice showed decreased adiposity, improved insulin sensitivity, and altered circulating incretin/adipokine levels in response to HFD. Mgll-/- mice on a chow diet exhibited significantly higher levels of Hydrogenoanaerobacterium, Roseburia, and Ruminococcus than WT mice. The relative abundance of the Lactobacillaceae and Coriobacteriaceae and of the Lactobacillus, Enterorhabdus, Clostridium_XlVa, and Falsiporphyromonas genera was significantly altered by HFD in WT but not Mgll-/- mice. Differently abundant families were also associated with changes in circulating adipokine and incretin levels in HFD-fed mice. Some gut microbiota family alterations could be reproduced by supplementing 2-AG or MAGs in culturomics experiments carried out with WT mouse fecal samples. We suggest that the altered microbiome of Mgll-/- mice contributes to their obesity resistant phenotype, and results in part from increased levels of 2-AG and MAGs.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Monoacilglicerol Lipases/genética , Adipocinas/sangue , Animais , Fezes/microbiologia , Teste de Tolerância a Glucose , Incretinas/sangue , Resistência à Insulina , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/deficiência , Monoacilglicerol Lipases/metabolismo , Obesidade/microbiologia , Obesidade/patologia , Análise de Componente Principal , Ruminococcus/genética , Ruminococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA