Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Metastasis Rev ; 41(2): 317-331, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366155

RESUMO

Pancreatic cancer is a deadly disease that is increasing in incidence throughout the world. There are no clear causal factors associated with the incidence of pancreatic cancer; however, some correlation to smoking, diabetes and alcohol has been described. Recently, a few studies have linked the human microbiome (oral and gastrointestinal tract) to pancreatic cancer development. A perturbed microbiome has been shown to alter normal cells while promoting cancer-related processes such as increased cell signaling, immune system evasion and invasion. In this article, we will review in detail the alterations within the gut and oral microbiome that have been linked to pancreatic cancer and explore the ability of other microbiomes, such as the lung and skin microbiome, to contribute to disease development. Understanding ways to identify a perturbed microbiome can result in advancements in pancreatic cancer research and allow for prevention, earlier detection and alternative treatment strategies for patients.


Assuntos
Microbiota , Neoplasias Pancreáticas , Humanos , Pâncreas , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas
2.
Cancer Immunol Immunother ; 70(3): 633-656, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32865605

RESUMO

Adoptive transfer of Bispecific antibody Armed activated T cells (BATs) showed promising anti-tumor activity in clinical trials in solid tumors. The cytotoxic activity of BATs occurs upon engagement with tumor cells via the bispecific antibody (BiAb) bridge, which stimulates BATs to release cytotoxic molecules, cytokines, chemokines, and other signaling molecules extracellularly. We hypothesized that the release of BATs Induced Tumor-Targeting Effectors (TITE) by this complex interaction of T cells, bispecific antibody, and tumor cells may serve as a potent anti-tumor and immune-activating immunotherapeutic approach. In a 3D tumorsphere model, TITE showed potent cytotoxic activity against multiple breast cancer cell lines compared to control conditioned media (CM): Tumor-CM (T-CM), BATs-CM (B-CM), BiAb Armed PBMC-CM (BAP-CM) or PBMC-CM (P-CM). Multiplex cytokine analysis showed high levels of Th1 cytokines and chemokines; phospho-protein signaling array data suggest that the prominent JAK1/STAT1 pathway may be responsible for the induction and release of Th1 cytokines/chemokines in TITE. In xenograft breast cancer models, IV injections of 10× concentrated TITE (3×/week for 3 weeks; 150 µl TITE/injection) was able to inhibit tumor growth significantly (ICR/scid, p < 0.003; NSG p < 0.008) compared to the control mice. We tested the key components of the TITE for immune activating and anti-tumor activity individually and in combinations, the combination of IFN-γ, TNF-α and MIP-1ß recapitulates the key activities of the TITE. In summary, master mix of active components of BATs-Tumor complex-derived TITE can provide a clinically controllable cell-free platform to target various tumor types regardless of the heterogeneous nature of the tumor cells and mutational tumor.


Assuntos
Citotoxicidade Imunológica , Imunomodulação , Ativação Linfocitária/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Camundongos , Neoplasias/diagnóstico , Neoplasias/terapia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206543

RESUMO

Aberrant nuclear protein transport, often observed in cancer, causes mislocalization-dependent inactivation of critical cellular proteins. Earlier we showed that overexpression of exportin 1 is linked to higher grade and Gleason score in metastatic castration resistant prostate cancer (mCRPC). We also showed that a selective inhibitor of nuclear export (SINE) selinexor and second generation eltanexor (KPT-8602) could suppress mCRPC growth, reduce androgen receptor (AR), and re-sensitize to androgen deprivation therapy. Here we evaluated the combination of KPT-8602 with PARP inhibitors (PARPi) olaparib, veliparib and rucaparib in 22rv1 mCRPC cells. KPT-8602 synergized with PARPi (CI < 1) at pharmacologically relevant concentrations. KPT-8602-PARPi showed superior induction of apoptosis compared to single agent treatment and caused up-regulation of pro-apoptotic genes BAX, TP53 and CASPASE 9. Mechanistically, KPT-8602-PARPi suppressed AR, ARv7, PSA and AR targets FOXA1 and UBE2C. Western blot analysis revealed significant down-regulation of AR, ARv7, UBE2C, SAM68, FOXA1 and upregulation of cleaved PARP and cleaved CASPASE 3. KPT-8602 with or without olaparib was shown to reduce homologous recombination-regulated DNA damage response targets including BRCA1, BRCA2, CHEK1, EXO1, BLM, RAD51, LIG1, XRCC3 and RMI2. Taken together, this study revealed the therapeutic potential of a novel combination of KPT-8602 and PARP inhibitors for the treatment of mCRPC.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Masculino , Modelos Biológicos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia
4.
Int J Mol Sci ; 21(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905765

RESUMO

Lenvatinib is a multitargeted tyrosine kinase inhibitor (TKI) that shows improved median progression-free survival (PFS) in patients with thyroid carcinomas. However, virtually all patients ultimately progress, indicating the need for a better understanding of the mechanisms of resistance. Here, we examined the molecular profile of anaplastic thyroid cancer cells (8505C) exposed to lenvatinib and found that long-term exposure to lenvatinib caused phenotypic changes. Consistent with change toward mesenchymal morphology, activation of pro-survival signaling, nuclear exporter protein exportin 1 (XPO1) and Rho GTPase effector p21 activated kinases (PAK) was also observed. RNA-seq analysis showed that prolonged lenvatinib treatment caused alterations in numerous cellular pathways and several oncogenes such as CEACAM (carcinoembryonic antigen-related cell adhesion molecule) and NUPR1 (Nuclear protein 1) were also upregulated. Further, we evaluated the impact of XPO1 and PAK4 inhibition in the presence or absence of lenvatinib. Targeted inhibition of XPO1 and PAK4 could sensitize the 8505C cells to lenvatinib. Both XPO1 and PAK4 inhibitors, when combined with lenvatinib, showed superior anti-tumor activity in 8505C sub-cutaneous xenograft. These studies bring forward novel drug combinations to complement lenvatinib for treating anaplastic thyroid cancer. Such combinations may possibly reduce the chances of lenvatinib resistance in thyroid cancer patients.


Assuntos
Antineoplásicos/farmacologia , Carioferinas/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Transcriptoma/efeitos dos fármacos , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Quimioterapia Combinada , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Carioferinas/metabolismo , Camundongos Endogâmicos ICR , Camundongos SCID , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Quinolinas/uso terapêutico , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Transcriptoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Ativadas por p21/metabolismo , Proteína Exportina 1
5.
Int J Mol Sci ; 20(19)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569391

RESUMO

Gastric cancer remains an unmet clinical problem in urgent need of newer and effective treatments. Here we show that the nuclear export protein, Exportin 1 (XPO1, chromosome region maintenance 1 or CRM1), is a promising molecular target in gastric cancer. We demonstrate significant overexpression of XPO1 in a cohort of histologically diverse gastric cancer patients with primary and metastatic disease. XPO1 RNA interference suppressed gastric cancer cell growth. Anti-tumor activity was observed with specific inhibitor of nuclear export (SINE) compounds (selinexor/XPOVIO), second-generation compound KPT-8602/eltanexor, KPT-185 and +ve control Leptomycin B in three distinct gastric cancer cell lines. SINE compounds inhibited gastric cancer cell proliferation, disrupted spheroid formation, induced apoptosis and halted cell cycle progression at the G1/S phase. Anti-tumor activity was concurrent with nuclear retention of tumor suppressor proteins and inhibition of colony formation. In combination studies, SINE compounds enhanced the efficacy of nab-paclitaxel in vitro and in vivo. More significantly, using non-coding RNA sequencing studies, we demonstrate for the first time that SINE compounds can alter the expression of non-coding RNAs (microRNAs and piwiRNAs). SINE treatment caused statistically significant downregulation of oncogenic miR-33b-3p in two distinct cell lines. These studies demonstrate the therapeutic significance of XPO1 in gastric cancer that warrants further clinical investigation.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Neoplasias Gástricas/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular , Humanos , Paclitaxel/química , Paclitaxel/farmacologia , Proteína Exportina 1
7.
Semin Cancer Biol ; 27: 39-45, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24954011

RESUMO

Epithelial-to-mesenchymal transition (EMT) and the reverse process (MET) play central role in organ developmental biology. It is a fine tuned process that when disturbed leads to pathological conditions especially cancers with aggressive and metastatic behavior. Snail is an oncogene that has been well established to be a promoter of EMT through direct repression of epithelial morphology promoter E-cadherin. It can function in the nucleus, in the cytosol and as discovered recently, extracellularly through secretory vesicular structures. The intracellular transport of snail has for long been shown to be regulated by the nuclear pore complex. One of the Karyopherins, importin alpha, mediates snail import, while exportin 1 (Xpo1) also known as chromosome maintenance region 1 (CRM1) is its major nuclear exporter. A number of additional biological regulators are emerging that directly modulate Snail stability by altering its subcellular localization. These observations indicate that targeting the nuclear transport machinery could be an important and as of yet, unexplored avenue for therapeutic intervention against the EMT processes in cancer. In parallel, a number of novel agents that disrupt nuclear transport have recently been discovered and are being explored for their anti-cancer effects in the early clinical settings. Through this review we provide insights on the mechanisms regulating snail subcellular localization and how this impacts EMT. We discuss strategies on how the nuclear transport function can be harnessed to rein in EMT through modulation of snail signaling.


Assuntos
Transporte Ativo do Núcleo Celular , Transição Epitelial-Mesenquimal , Fatores de Transcrição/metabolismo , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fatores de Transcrição da Família Snail
8.
J Biol Chem ; 289(21): 14520-33, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24719318

RESUMO

Subpopulations of cancer stem cells (CSCs) or cancer stem-like cells (CSLCs) have been identified from most tumors, including pancreatic cancer (PC), and the existence of these cells is clinically relevant. Emerging evidence suggests that CSLCs participate in cell growth/proliferation, migration/invasion, metastasis, and chemo-radiotherapy resistance, ultimately contributing to poor clinical outcome. However, the pathogenesis and biological significance of CSLCs in PC has not been well characterized. In the present study, we found that isolated triple-marker-positive (CD44(+)/CD133(+)/EpCAM(+)) cells of human PC MiaPaCa-2 and L3.6pl cells behave as CSLCs. These CSLCs exhibit aggressive behavior, such as increased cell growth, migration, clonogenicity, and self-renewal capacity. The mRNA expression profiling analysis showed that CSLCs (CD44(+)/CD133(+)/EpCAM(+)) exhibit differential expression of more than 1,600 mRNAs, including FoxQ1, compared with the triple-marker-negative (CD44(-)/CD133(-)/EpCAM(-)) cells. The knockdown of FoxQ1 by its siRNA in CSLCs resulted in the inhibition of aggressive behavior, consistent with the inhibition of EpCAM and Snail expression. Mouse xenograft tumor studies showed that CSLCs have a 100-fold higher potential for tumor formation and rapid tumor growth, consistent with overexpression of CSC-associated markers/mediators, including FoxQ1, compared with its parental MiaPaCa-2 cells. The inhibition of FoxQ1 attenuated tumor formation and growth, and expression of CSC markers in the xenograft tumor derived from CSLCs of MiaPaCa-2 cells. These data clearly suggest the role of differentially expressed genes in the regulation of CSLC characteristics, further suggesting that targeting some of these genes could be important for the development of novel therapies for achieving better treatment outcome of PC.


Assuntos
Fatores de Transcrição Forkhead/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/genética , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Apoptose/genética , Western Blotting , Moléculas de Adesão Celular/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Molécula de Adesão da Célula Epitelial , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos SCID , Microscopia Confocal , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Peptídeos/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Transl Med ; 13: 227, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26174772

RESUMO

BACKGROUND: There is a paucity of effective therapies for recurrent/aggressive meningiomas. Establishment of improved in vitro and in vivo meningioma models will facilitate development and testing of novel therapeutic approaches. METHODS: A primary meningioma cell line was generated from a patient with an olfactory groove meningioma. The cell line was extensively characterized by performing analysis of growth kinetics, immunocytochemistry, telomerase activity, karyotype, and comparative genomic hybridization. Xenograft models using immunocompromised SCID mice were also developed. RESULTS: Histopathology of the patient tumor was consistent with a WHO grade I typical meningioma composed of meningothelial cells, whorls, and occasional psammoma bodies. The original tumor and the early passage primary cells shared the standard immunohistochemical profile consistent with low-grade, good prognosis meningioma. Low passage KCI-MENG1 cells were composed of two cell types with spindle and round morphologies, showed linear growth curve, had very low telomerase activity, and were composed of two distinct unrelated clones on cytogenetic analysis. In contrast, high passage cells were homogeneously round, rapidly growing, had high telomerase activity, and were composed of a single clone with a near triploid karyotype containing 64-66 chromosomes with numerous aberrations. Following subcutaneous and orthotopic transplantation of low passage cells into SCID mice, firm tumors positive for vimentin and progesterone receptor (PR) formed, while subcutaneous implant of high passage cells yielded vimentin-positive, PR-negative tumors, concordant with a high-grade meningioma. CONCLUSIONS: Although derived from a benign meningioma specimen, the newly-established spontaneously immortal KCI-MENG1 meningioma cell line can be utilized to generate xenograft tumor models with either low- or high-grade features, dependent on the cell passage number (likely due to the relative abundance of the round, near-triploid cells). These human meningioma mouse xenograft models will provide biologically relevant platforms from which to investigate differences in low- vs. high-grade meningioma tumor biology and disease progression as well as to develop novel therapies to improve treatment options for poor prognosis or recurrent meningiomas.


Assuntos
Neoplasias Meníngeas/patologia , Meningioma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Forma Celular , Bandeamento Cromossômico , Hibridização Genômica Comparativa , Feminino , Humanos , Imuno-Histoquímica , Cariotipagem , Camundongos SCID , Pessoa de Meia-Idade , Gradação de Tumores , Neuroimagem
10.
Gastroenterology ; 144(2): 447-456, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23089203

RESUMO

BACKGROUND & AIMS: Tumor-suppressor proteins are inactivated by many different mechanisms, including nuclear exclusion by chromosome region maintenance (CRM)-1. Increased tumor levels of CRM-1 have been correlated with poor prognosis of patients with pancreatic cancer, making it a therapeutic target. Selective inhibitors of nuclear export (SINEs) bind to CRM-1 to irreversibly inhibit its ability to export proteins; we investigated a new class of SINEs in pancreatic cancer cells. METHODS: We studied the effects of SINE analogs in a panel of pancreatic cancer cell lines and nontransformed human pancreatic ductal epithelial cells using proliferation, apoptosis, immunoblot, co-immunoprecipitation, small inhibitor RNA, and fluorescence microscopy analyses. The effects of the SINEs also were investigated in mice with subcutaneous and orthotopic tumors. RESULTS: SINEs (KPT-185, KPT-127, KPT-205, and KPT-227) inhibited proliferation and promoted apoptosis of pancreatic cancer cells, but did not affect human pancreatic ductal epithelial cells. The nuclei of cells incubated with KPT-185 accumulated tumor-suppressor proteins (p27, FOXO, p73, and prostate apoptosis response-4 [PAR-4]) and inhibited interactions between CRM-1 and these proteins. Mutations in the region of CRM-1 that bind to SINEs (Cys-528), or small inhibitor RNA knockdown of PAR-4, prevented the ability of KPT-185 to block proliferation and induce apoptosis of pancreatic cancer cells. Oral administration of KPT-330 to mice reduced growth of subcutaneous and orthotopic xenograft tumors without major toxicity. Analysis of tumor remnants showed that KPT-330 disrupted the interaction between CRM-1 and PAR-4, activated PAR-4 signaling, and reduced proliferation of tumor cells. CONCLUSIONS: We identified SINEs that inhibit CRM-1 and promote nuclear accumulation of tumor-suppressor proteins in pancreatic cancer cells. Oral administration of the drug to mice reduces growth of xenograft tumors.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Experimentais , Neoplasias Pancreáticas/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoprecipitação , Carioferinas/metabolismo , Camundongos , Microscopia de Fluorescência , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , RNA Neoplásico/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Exportina 1
11.
Haematologica ; 98(7): 1098-106, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23403316

RESUMO

The nuclear export protein chromosome maintenance region 1, found to be elevated in non-Hodgkin's lymphomas, controls localization of critical tumor suppressor proteins. Nuclear localization of tumor suppressor proteins is necessary for their cell surveillance function. However, their nuclear exclusion by chromosome maintenance region 1 renders them ineffective making this nuclear transporter an attractive therapeutic target. We have identified selective inhibitors of nuclear export that lock tumor suppressor proteins in the cell nucleus leading to apoptosis of lymphoid but not normal cells. Our inhibitors induce tumor suppressor protein nuclear retention-dependent growth inhibition and apoptosis in a panel of non-Hodgkin's lymphoma cell lines. Western blot of nuclear protein fraction and confocal microscopy analysis demonstrated retention of major tumor suppressor proteins in the cell nucleus. Co-immunoprecipitation studies showed disruption of the tumor suppressor protein-chromosome maintenance region 1 interaction. Small inhibitor RNA knockdown of two major tumor suppressor proteins, p53 in wild-type protein-53 and protein 73 in mutant-protein-53, abrogated inhibitor activity. Oral administration of related inhibitor at 75 and 150 mg/kg resulted in 65 and 70% tumor reduction, respectively and subcutaneous injections of inhibitor (25 and 75 mg/kg) resulted in 70 and 74% suppression of non-Hodgkin's lymphoma tumor growth with no toxicity; residual tumors showed activation of the protein 73 pathway. Our study verifies chromosome maintenance region 1 as a therapeutic target in non-Hodgkin's lymphoma, indicating that this nuclear export protein warrants further clinical investigations.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Linfoma não Hodgkin/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Acrilatos/química , Acrilatos/farmacologia , Acrilatos/uso terapêutico , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Humanos , Linfoma Folicular/tratamento farmacológico , Linfoma Folicular/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma não Hodgkin/tratamento farmacológico , Camundongos , Camundongos SCID , Resultado do Tratamento , Triazóis/química , Triazóis/farmacologia , Triazóis/uso terapêutico , Células Tumorais Cultivadas , Macroglobulinemia de Waldenstrom/tratamento farmacológico , Macroglobulinemia de Waldenstrom/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteína Exportina 1
12.
Bioorg Med Chem Lett ; 23(10): 3101-4, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23562242

RESUMO

Thymoquinone (TQ), isolated from the seeds of Nigella sativa, show moderate efficacy against pancreatic cancer. In the present work we report synthesis and characterization of novel TQ analogs appended with gallate and fluorogallate pharmacophores and evaluation of their effects against pancreatic cancer cell lines for cell viability and induction of apoptosis. The efficacy of the analogs alone or in combination with Gemcitabine was assessed in vitro. LC-MS spectra of ATQTHB and ATQTFB showed major peaks corresponding to expected M+1 fragment at 316.34 and 322.34 respectively. Molecular docking studies revealed good fit for these analogs in the COX-2 protein cavity with better binding energies compared to parent TQ compound. Present TQ analogs exhibit superior anti-proliferative activity, excellent chemo-sensitizing activity against pancreatic cancer in vitro and in combination with Gemcitabine.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzoquinonas/química , Benzoquinonas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzoquinonas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Nigella sativa/química , Neoplasias Pancreáticas/patologia , Relação Estrutura-Atividade
13.
Adv Radiat Oncol ; 8(1): 101122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36479231

RESUMO

Purpose: Local tumor progression is a cause of significant morbidity and mortality in patients with pancreatic ductal adenocarcinoma (PDAC) with surgically unresectable disease. Novel and effective approaches to accomplish durable local control are urgently needed. We tested whether CPI-613 (devimistat), a first-in-class investigational small molecule inhibitor of mitochondrial metabolism, was capable of altering cancer cell energy metabolism and sensitizing PDAC cells to radiation therapy (RT). Methods and Materials: The effect of a combined treatment of RT with CPI-613 on the viability of, clonogenic potential of, and cell death induction in PDAC cells (MiaPaCa-2 and Panc-1) was determined using a trypan blue dye exclusion assay, a colony formation assay, and a 7-amino-actinomycin D assay, respectively. The synergistic effects of CPI-613-RT and chemotherapeutic agents (gemcitabine or 5-fluorouracil) were measured in MiaPaCa-2 cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and spheroid formation assay. Changes in energy metabolism were determined by profiling metabolites treated with either RT, CPI-613, or both using liquid chromatography-mass spectrometry. Results: This study demonstrates that a combination of single-fraction RT (2 and 10 Gy) with CPI-613 significantly inhibits PDAC cell growth compared with RT alone. Molecular analysis revealed inhibition of α-ketoglutarate dehydrogenase at the protein level. In addition, we demonstrate enhanced cell death of PDAC cells when treated with RT-CPI-613 combination. Targeted metabolomic analysis on PDAC cells post-CPI-613-RT treatment revealed alterations in key mitochondrial metabolites, with broader target engagement by the combination treatment, indicating the sensitization of CPI-613-treated PDAC cells to RT. Furthermore, a combination treatment of CPI-613 with either gemcitabine or 5-fluorouracil in the presence of 2 Gy RT synergistically inhibits PDAC cell proliferation. Conclusions: Our results support a novel combination of CPI-613-RT that warrants further preclinical and early-phase clinical investigations. A phase 1 trial designed to identify the maximum tolerated dose of CPI-613 in combination with chemo-RT in patients with PDAC was recently initiated (NCT05325281).

14.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38187605

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with limited therapeutic options. Here we for the first time evaluated the role of regulator of chromosome condensation 1 (RCC1) in PDAC subsistence and drug resistance. RCC1 expression was found to be elevated in PDAC tissues in comparison with normal pancreatic tissues and was linked to poor prognosis. RCC1 silencing in a panel of PDAC cells by RNA interference and CRISPR-Cas9 resulted in reduced cellular proliferation in 2D and 3D cultures. RCC1 KD reduced migratory and clonogenic ability, enhanced apoptosis, and altered cell cycle distribution in human PDAC cells as well as cells isolated from the LSL-Kras G12D/+; LSL-Trp53 R172H/+ ;Pdx1-Cre (KPC) mouse tumors. Subcutaneous cell-derived xenografts show significantly attenuated growth of RCC1 KO tumors. Mechanistically, RCC1 knockdown resulted in disruption of subcellular Ran distribution indicating that stable nuclear Ran localization is critical for PDAC proliferation. Nuclear and cytosolic proteomic analysis revealed altered subcellular proteome in RCC1 KD KPC-tumor-derived cells. Altered cytoplasmic protein pathways include several metabolic pathways and PI3K-Akt signaling pathway. Pathways enriched in altered nuclear proteins include cell cycle, mitosis, and RNA regulation. RNA sequencing of RCC1 KO cells showed widespread transcriptional alterations. Upstream of RCC1, c-Myc activates the RCC1-Ran axis, and RCC1 KO enhances the sensitivity of PDAC cells to c-Myc inhibitors. Finally, RCC1 knockdown resulted in the sensitization of PDAC cells to Gemcitabine. Our results indicate that RCC1 is a potential therapeutic target in PDAC that warrants further clinical investigations.

15.
bioRxiv ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37034616

RESUMO

KRASG12C inhibitors have revolutionized the treatment landscape for cancer patients harboring the G12C mutant isoform of KRAS. With the recent FDA approval of sotorasib and adagrasib, patients now have access to more promising treatment options. However, patients who receive these agents as a monotherapy usually develop drug resistance. Thus, there is a need to develop logical combination strategies that can delay or prevent the onset of resistance and simultaneously enhance the antitumor effectiveness of the treatment regimen. In this study, we aimed at pharmacologically targeting PAK4 by KPT9274 in combination with KRASG12C inhibitors in KRASG12C mutant pancreatic ductal adenocarcinoma (PDAC) and nonâ€"small cell lung cancer (NSCLC) preclinical models. PAK4 is a hub molecule that links several major signaling pathways and is known for its tumorigenic role in mutant Ras-driven cancers. We assessed the cytotoxicity of PAK4 and KRASG12C inhibitors combination in KRASG12C mutant 2D and 3D cellular models. KPT9274 synergized with both sotorasib and adagrasib in inhibiting the growth of KRASG12C mutant cancer cells. The combination was able to reduce the clonogenic potential of KRASG12C mutant PDAC cells. We also evaluated the antitumor activity of the combination in a KRASG12C mutant PDAC cell line-derived xenograft (CDX) model. Oral administration of a sub-optimal dose of KPT9274 in combination with sotorasib (at one-fourth of MTD) demonstrated significant inhibition of the tumor burden ( p = 0.002). Similarly, potent antitumor efficacy was observed in an NSCLC CDX model where KPT9274, acting as an adjuvant, prevented tumor relapse following the discontinuation of sotorasib treatment ( p = 0.0001). KPT9274 and sotorasib combination also resulted in enhanced survival. This is the first study showing that KRASG12C inhibitors can synergize with PAK4 inhibitor KPT9274 both in vitro and in vivo resulting in remarkably enhanced antitumor activity and survival outcomes. Significance: KRASG12C inhibitors demonstrate limited durable response in patients with KRASG12C mutations. In this study, combining PAK4 inhibitor KPT9274 with KRASG12C inhibitors has resulted in potent antitumor effects in preclinical cancer models of PDAC and NSCLC. Our results bring forward a novel combination therapy for cancer patients that do not respond or develop resistance to KRASG12C inhibitor treatment.

16.
Clin Transl Med ; 13(12): e1513, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38131168

RESUMO

BACKGROUND: The majority of pancreatic ductal adenocarcinoma (PDAC) patients experience disease progression while on treatment with gemcitabine and nanoparticle albumin-bound (nab)-paclitaxel (GemPac) necessitating the need for a more effective treatment strategy for this refractory disease. Previously, we have demonstrated that nuclear exporter protein exportin 1 (XPO1) is a valid therapeutic target in PDAC, and the selective inhibitor of nuclear export selinexor (Sel) synergistically enhances the efficacy of GemPac in pancreatic cancer cells, spheroids and patient-derived tumours, and had promising activity in a phase I study. METHODS: Here, we investigated the impact of selinexor-gemcitabine-nab-paclitaxel (Sel-GemPac) combination on LSL-KrasG12D/+ ; LSL-Trp53R172H/+ ; Pdx1-Cre (KPC) mouse model utilising digital spatial profiling (DSP) and single nuclear RNA sequencing (snRNAseq). RESULTS: Sel-GemPac synergistically inhibited the growth of the KPC tumour-derived cell line. The Sel-GemPac combination reduced the 2D colony formation and 3D spheroid formation. In the KPC mouse model, at a sub-maximum tolerated dose (sub-MTD) , Sel-GemPac enhanced the survival of treated mice compared to controls (p < .05). Immunohistochemical analysis of residual KPC tumours showed re-organisation of tumour stromal architecture, suppression of proliferation and nuclear retention of tumour suppressors, such as Forkhead Box O3a (FOXO3a). DSP revealed the downregulation of tumour promoting genes such as chitinase-like protein 3 (CHIL3/CHI3L3/YM1) and multiple pathways including phosphatidylinositol 3'-kinase-Akt (PI3K-AKT) signalling. The snRNAseq demonstrated a significant loss of cellular clusters in the Sel-GemPac-treated mice tumours including the CD44+ stem cell population. CONCLUSION: Taken together, these results demonstrate that the Sel-GemPac treatment caused broad perturbation of PDAC-supporting signalling networks in the KPC mouse model. HIGHLIGHTS: The majority of pancreatic ductal adenocarcinoma (PDAC) patients experience disease progression while on treatment with gemcitabine and nanoparticle albumin-bound (nab)-paclitaxel (GemPac). Exporter protein exportin 1 (XPO1) inhibitor selinexor (Sel) with GemPac synergistically inhibited the growth of LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) mouse derived cell line and enhanced the survival of mice. Digital spatial profiling shows that Sel-GemPac causes broad perturbation of PDAC-supporting signalling in the KPC model.


Assuntos
Carcinoma Ductal Pancreático , Combinação de Medicamentos , Proteína Exportina 1 , Neoplasias Pancreáticas , Animais , Camundongos , Modelos Animais de Doenças , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteína Exportina 1/antagonistas & inibidores , Gencitabina/administração & dosagem , Paclitaxel/administração & dosagem , Hidrazinas/administração & dosagem , Triazóis/administração & dosagem , Microambiente Tumoral , Análise da Expressão Gênica de Célula Única , Humanos
17.
Mol Cancer Ther ; 22(12): 1422-1433, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703579

RESUMO

KRASG12C inhibitors, such as sotorasib and adagrasib, have revolutionized cancer treatment for patients with KRASG12C-mutant tumors. However, patients receiving these agents as monotherapy often develop drug resistance. To address this issue, we evaluated the combination of the PAK4 inhibitor KPT9274 and KRASG12C inhibitors in preclinical models of pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). PAK4 is a hub molecule that links several major signaling pathways and is known for its tumorigenic role in mutant Ras-driven cancers. We found that cancer cells resistant to KRASG12C inhibitor were sensitive to KPT9274-induced growth inhibition. Furthermore, KPT9274 synergized with sotorasib and adagrasib to inhibit the growth of KRASG12C-mutant cancer cells and reduce their clonogenic potential. Mechanistically, this combination suppressed cell growth signaling and downregulated cell-cycle markers. In a PDAC cell line-derived xenograft (CDX) model, the combination of a suboptimal dose of KPT9274 with sotorasib significantly reduced the tumor burden (P= 0.002). Similarly, potent antitumor efficacy was observed in an NSCLC CDX model, in which KPT9274, given as maintenance therapy, prevented tumor relapse following the discontinuation of sotorasib treatment (P= 0.0001). Moreover, the combination of KPT9274 and sotorasib enhances survival. In conclusion, this is the first study to demonstrate that KRASG12C inhibitors can synergize with the PAK4 inhibitor KPT9274 and combining KRASG12C inhibitors with KPT9274 can lead to remarkably enhanced antitumor activity and survival benefits, providing a novel combination therapy for patients with cancer who do not respond or develop resistance to KRASG12C inhibitor treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma Ductal Pancreático , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases Ativadas por p21/genética , Neoplasias Pancreáticas
18.
Carcinogenesis ; 33(12): 2450-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22971573

RESUMO

Garcinol, obtained from Garcinia indica, has exhibited some promising anticancer activity. In particular, our earlier work has demonstrated its ability to inhibit cell proliferation and induction of apoptosis in multiple cancer cell lines representative of breast, prostate, as well as pancreatic cancers. However, its exact mechanism of action remains largely unclear. Here we show that garcinol also targets signal transducer and activator of transcription-3 (STAT-3) signaling pathway. STAT-3 is frequently found to be activated in many cancer types and this is the first report on such action of garcinol leading to its anticancer effects. Garcinol inhibited total, as well as phosphorylated, STAT-3 in breast, prostate and pancreatic cancer cell lines and was also found to inhibit cell invasion of all the cancer cell lines tested. STAT-3 phosphorylation was inhibited by garcinol in a dose-dependent manner. We also observed an inhibitory effect of garcinol on IL-6-induced STAT-3 phosphorylation and production of urokinase-type plasminogen activator, vascular endothelial growth factor and matrix metalloproteinase-9, which might explain the reduced invasion and aggressiveness of cells treated with garcinol. The results were further verified in vivo using MDA-MB-231 breast cancer mouse xenograft model where administration of garcinol significantly inhibited tumor growth, and western blot analysis of remnant tumor lysates showed reduced STAT-3 expression and activation. These results suggest that garcinol may have translational potential as chemopreventive or therapeutic agent against multiple cancers and inhibition of STAT-3 signaling pathway is one of the mechanisms by which garcinol exerts its anticancer effects.


Assuntos
Antineoplásicos/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Terpenos/farmacologia , Animais , Linhagem Celular Tumoral , Compostos Clorados/farmacologia , Feminino , Humanos , Interleucina-6/farmacologia , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/fisiologia , Invasividade Neoplásica , Compostos de Platina/farmacologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/fisiologia
19.
Cancer Res Commun ; 2(5): 342-352, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35573474

RESUMO

The identification of molecules that can bind covalently to KRAS G12C and lock it in an inactive GDP-bound conformation has opened the door to targeting KRAS G12C selectively. These agents have shown promise in preclinical tumor models and clinical trials. FDA has recently granted approval to sotorasib for KRAS G12C mutated non-small cell lung cancer (NSCLC). However, patients receiving these agents as monotherapy generally develop drug resistance over time. This necessitates the development of multi-targeted approaches that can potentially sensitize tumors to KRAS inhibitors. We generated KRAS G12C inhibitor-resistant cell lines and observed that they exhibit sensitivity toward selinexor, a selective inhibitor of nuclear export protein exportin1 (XPO1), as a single agent. KRAS G12C inhibitors in combination with selinexor suppressed the proliferation of KRAS G12C mutant cancer cell lines in a synergistic manner. Moreover, combined treatment of selinexor with KRAS G12C inhibitors resulted in enhanced spheroid disintegration, reduction in the number and size of colonies formed by G12C mutant cancer cells. Mechanistically, the combination of selinexor with KRAS G12C inhibitors suppressed cell growth signaling and downregulated the expression of cell cycle markers, KRAS and NF-kB as well as increased nuclear accumulation of tumor suppressor protein Rb. In an in vivo KRAS G12C cell-derived xenograft model, oral administration of a combination of selinexor and sotorasib was demonstrated to reduce tumor burden and enhance survival. In conclusion, we have shown that the nuclear transport protein XPO1 inhibitor can enhance the anticancer activity of KRAS G12C inhibitors in preclinical cancer models. Significance: In this study, combining nuclear transport inhibitor selinexor with KRAS G12C inhibitors has resulted in potent antitumor effects in preclinical cancer models. This can be an effective combination therapy for cancer patients that do not respond or develop resistance to KRAS G12C inhibitor treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Transporte Ativo do Núcleo Celular , Carioferinas , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais
20.
Cancers (Basel) ; 14(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008323

RESUMO

Diffuse large B-cell lymphoma (DLBCL), grade 3b follicular lymphoma (FL), and mantle cell lymphoma (MCL) are aggressive non-Hodgkin's lymphomas (NHL). Cure rates are suboptimal and novel treatment strategies are needed to improve outcomes. Here, we show that p21-activated kinase 4 (PAK4) and nicotinamide phosphoribosyl transferase (NAMPT) is critical for lymphoma subsistence. Dual targeting of PAK4-NAMPT by the Phase I small molecule KPT-9274 suppressed cell proliferation in DLBCL, FL, and MCL. Growth inhibition was concurrent with apoptosis induction alongside activation of pro-apoptotic proteins and reduced pro-survival markers. We observed NAD suppression, ATP reduction, and consequent cellular metabolic collapse in lymphoma cells due to KPT-9274 treatment. KPT-9274 in combination with standard-of-care chemotherapeutics led to superior inhibition of cell proliferation. In vivo, KPT-9274 could markedly suppress the growth of WSU-DLCL2 (DLBCL), Z-138, and JeKo-1 (MCL) sub-cutaneous xenografts, and a remarkable increase in host life span was shown, with a 50% cure of a systemic WSU-FSCCL (FL) model. Residual tumor analysis confirmed a reduction in total and phosphorylated PAK4 and activation of the pro-apoptotic cascade. This study, using various preclinical experimental models, demonstrates the therapeutic potential of targeting PAK4-NAMPT in DLBCL, FL, and MCL. The orally bioavailable, safe, and efficacious PAK4-NAMPT dual inhibitor KPT-9274 warrants further clinical investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA