Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 24(7): 1672-1678, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30294234

RESUMO

This study was carried out to determine the median lethal concentrations (LC50) of Zinc nanoparticles (ZnNPs) on Oreochromis niloticus and Tilapia zillii. The biochemical and molecular potential effects of ZnNPs (500 and 2000 µg L-1) on the antioxidant system in the brain tissue of O. niloticus and T. zillii were investigated. Four hundred fish were used for acute and sub-acute studies. ZnNP LC50 concentrations were investigated in O. niloticus and T. zillii. The effect of 500 and 2000 µg L-1 ZnNPs on brain antioxidants of O. niloticus and T. zillii was investigated. The result indicated that 69 h LC50 was 5.5 ± 0.6 and 5.6 ± 0.4 for O. nilotica and T. zillii, respectively. Fish exposed to 500 µg L-1 ZnNPs showed a significant increase in reduced glutathione (GSH), total glutathione (tGSH) levels, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activity and gene expression. On the contrary, malondialdehyde (MDA) levels significantly decreased. Meanwhile, fish exposed to 2000 µg L-1 ZnNPs showed a significant decrease of GSH, tGSH levels, SOD, CAT, GR, GPx and GST activity and gene expression. On the contrary, MDA levels significantly increased. It was concluded that, the 96 h LC50 of ZnNPs was 5.5 ± 0.6 and 5.6 ± 0.4 for O. nilotica and T. zillii, respectively. ZnNPs in exposure concentrations of 2000 µg/L induced a deleterious effect on the brain antioxidant system of O. nilotica and T. zillii. In contrast, ZnNPs in exposure concentrations of 500 µg L-1 produced an inductive effect on the brain antioxidant system of O. nilotica and T. zillii.

2.
Saudi J Biol Sci ; 24(7): 1580-1587, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30294228

RESUMO

The mRNA expression profile of some antioxidant genes in skin, gills, livers, and muscles of Siganus canaliculatus and Epinephelus morio was used as an indicator of petroleum hydrocarbons pollution in six areas at Jeddah and Yanbu coasts in KSA. Total petroleum hydrocarbons (TPHs) were determined in both sea water and sediments collected from the studied areas. The mRNA expression levels of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were determined. The highest level of total petroleum hydrocarbons was observed in front of the petromine refinery at Jeddah and in S. canaliculatus when compared to E. morio. There was a significant high expression level of studied antioxidant enzymes genes in the polluted areas and the level of the expression profile tended to correlate with the degree of pollution and fish species feed habit. This was confirmed by the level of MDA which in the same way increased with an increase in the level of total hydrocarbons. In conclusion; the expression profile of antioxidant enzymes of S. canaliculatus and E. morio tissues can be used as a strong bio-indicator of total hydrocarbons pollution especially in S. canaliculatus.

3.
Saudi J Biol Sci ; 23(6): 754-760, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27872573

RESUMO

BACKGROUND: Silver nanoparticles (Ag-NPs) are widely used nowadays in a variety of commercial applications including medical, health care, textiles and household supplies. OBJECTIVES: The current study was designed to determine the median lethal dose (LC50) of Ag-NPs on Oreochromis niloticus and Tilapia zillii. METHODS: Acute and sub-acute toxicity study of the Ag-NPs on brain tissues was carried out using different concentrations of the NPs at 2 mg L and 4 mg L. These concentrations were dispersed in deionized water with the exception of the control groups in the experiments. Biochemical and molecular analysis were conducted on tissue homogenates in order to evaluate the potential effects of NPs on the antioxidant system. RESULTS: The Ag-NP acute toxicity (96 h LC50) values of 19.5 ± 2 and 20 ± 2.4 mg/L were reported for O. niloticus and T. zillii respectively. Fish exposed to 2 mg/L Ag-NPs did not show any significant change in the levels of reduced glutathione (GSH), total glutathione (tGSH) levels, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activity or genes expression and malondialdehyde (MDA) level. In contrary, a dose of 4 mg/L showed a significant reduction in the levels all the above-mentioned parameters except in MDA level where it was significantly induced. CONCLUSION: Results indicate that exposure of O. niloticus and T. zillii to Ag-NPs (4 mg/L) has deleterious effects on brain antioxidant system, whereas a dose of 2 mg/L has no effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA