Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 164: 107260, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34273502

RESUMO

Because of their extraordinary flower and leaf morphology, passion flowers (Passifloraceae) have fascinated naturalists since their discovery. Within the large, diverse (600 species) genus Passiflora is an especially enigmatic and species-rich (120 spp.) subclade, Section Decaloba, which occurs in the Neotropics and has its center of diversity in Andean montane forests. A recent phylogenetic study of Passifloraceae showed that Section Decaloba was monophyletic, but was unable to resolve relationships within the clade, thus preventing inferences of evolutionary history and biogeography. The goal of this study was to elucidate the phylogeny and biogeography of Section Decaloba. We sampled 206 accessions representing 91 of the ~ 120 known species in section Decaloba and four outgroups, with samples derived predominantly from herbarium specimens. We generated DNA sequences using a high-throughput DNA sequencing technique called 2b-RAD, reconstructed the phylogeny, and conducted ancestral area reconstructions to infer the biogeographic history of the group. We recovered predominantly well-supported trees in which species were grouped into two main clades: 1) the Central American clade, within which the majority of nodes well supported and species were monophyletic and 2) the South American clade, a large clade that showed overall lower resolution and included several polyphyletic species and species complexes that need additional research. RASP analysis showed that section Decaloba originated in Central America around 10.4 Ma, and then dispersed to South America, the Greater Antilles, and the Bahamas. The South American clade diversified in the Northern Andes and then dispersed to the rest of South America, and Lesser Antilles. Results suggest that both long-distance dispersal and colonization of newly available habitats (i.e., in the Andes) likely promoted diversification of this clade. This study also illustrates how using herbarium specimens and a RAD-seq approach can produce phylogenies for broadly distributed, highly diverse, and poorly accessible groups of plants where field collections would be unfeasible.


Assuntos
Passiflora , Teorema de Bayes , Biodiversidade , Evolução Biológica , Passiflora/genética , Filogenia , Filogeografia , Análise de Sequência de DNA
2.
Genes (Basel) ; 13(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35205394

RESUMO

Relationships within the major clades of Cactaceae are relatively well known based on DNA sequence data mostly from the chloroplast genome. Nevertheless, some nodes along the backbone of the phylogeny, and especially generic and species-level relationships, remain poorly resolved and are in need of more informative genetic markers. In this study, we propose a new approach to solve the relationships within Cactaceae, applying a targeted sequence capture pipeline. We designed a custom probe set for Cactaceae using MarkerMiner and complemented it with the Angiosperms353 probe set. We then tested both probe sets against 36 different transcriptomes using Hybpiper preferentially retaining phylogenetically informative loci and reconstructed the relationships using RAxML-NG and Astral. Finally, we tested each probe set through sequencing 96 accessions, representing 88 species across Cactaceae. Our preliminary analyses recovered a well-supported phylogeny across Cactaceae with a near identical topology among major clade relationships as that recovered with plastome data. As expected, however, we found incongruences in relationships when comparing our nuclear probe set results to plastome datasets, especially at the generic level. Our results reveal great potential for the combination of Cactaceae-specific and Angiosperm353 probe set application to improve phylogenetic resolution for Cactaceae and for other studies.


Assuntos
Cactaceae , Genoma de Cloroplastos , Cactaceae/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA