Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Org Biomol Chem ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319402

RESUMO

1,2-Dicarbonyl compounds are privileged functionalities found in natural products, pharmaceuticals, bioactive molecules, and food items, and are important precursors in catalysis, asymmetric synthesis, polymer chemistry and synthesizing functionalized heterocycles. Herein, this comprehensive review focuses on various approaches for synthesizing 1,2-dicarbonylated aryls and heteroaryls in both intermolecular and intramolecular fashion, covering the dicarbonylation of indoles, imidazoheterocycles, indolizines, aminopyrazoles, pyrroloisoquinolines, coumarins, furan, anilines, phenols, anthranils, and benzil synthesis over the last decade (since 2015). Also, the present review highlights the scope and future perspectives of the approach.

2.
Org Biomol Chem ; 22(15): 2916-2947, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38497106

RESUMO

In recent years, the maleimide scaffold has received a great deal of attention in C-H activation. Several types of products can be constructed using maleimides as a coupling partner. Alkylation, alkenylation, annulation, dehydrogenative annulation and spirocyclization are various reactions shown by maleimides in C-H activation. Thus, the maleimide scaffold has been extensively studied in the last few years in C-H activation owing to its unique reactivity. Among the diverse class of reactions of maleimides, spirocyclization is a less explored reaction. The spirocycles, in particular the spirosuccinimides are interesting candidates in drug discovery and materials chemistry. Therefore the method of spirocyclization of maleimides via C-H activation becomes an important strategy for the synthesis of a diverse array of spirosuccinimides. This review summarizes the reports available in this field from 2015-2023 and also highlights the scopes and prospects of this method.

3.
RSC Adv ; 14(30): 21269-21276, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38974224

RESUMO

Herein we prepared the novel LaF3·Pd nanocatalyst characterized by XRD and TEM analysis. The nanocatalyst was applied in Suzuki coupling reaction for the synthesis of biaryls in aqueous medium from readily available aryl halides (bromides and iodides) and substituted phenylboronic acids in the presence of K2CO3 as the base at 70 °C. The present method is capable of giving the C-C coupled product in good to excellent yields (up to 97%). The reactions were conducted under green conditions in aqueous medium and the nanocatalyst used in this study was recyclable. The recyclability and reusability of the catalyst was checked for seven consecutive cycles without significant loss in reactivity.

4.
ACS Omega ; 7(22): 18660-18670, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694517

RESUMO

Herein, we report a metal-free one-pot three-component reaction of aryl methyl ketones, 2-aminopyridines, and barbituric acids for the synthesis of pyrimidine-linked imidazopyridines using a catalytic amount of molecular iodine in DMSO medium. This process involves a one-pot C-H oxidation, followed by the formation of one C-C and two C-N bonds. A wide variety of aryl methyl ketones and 2-aminopyridines were found to be suitable for this methodology. The UV and fluorescence properties of the synthesized products were studied in water and DMSO media. Most of the synthesized products exhibited very good to excellent fluorescence quantum yield. Among all the products, compounds 4p and 4q showed the maximum fluorescence quantum yield (0.36) in water medium under basic conditions and compound 4c showed the maximum fluorescence quantum yield (0.75) in DMSO medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA