Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 137(2): 235-46, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19379691

RESUMO

X-linked myopathy with excessive autophagy (XMEA) is a childhood-onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p it is an essential assembly chaperone of the V-ATPase, the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH, which reduces lysosomal degradative ability and blocks autophagy. This reduces cellular free amino acids, which upregulates the mTOR pathway and mTOR-dependent macroautophagy, resulting in proliferation of large and ineffective autolysosomes that engulf sections of cytoplasm, merge together, and vacuolate the cell. Our results uncover macroautophagic overcompensation leading to cell vacuolation and tissue atrophy as a mechanism of disease.


Assuntos
Genes Ligados ao Cromossomo X , Doenças Musculares/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Autofagia , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
2.
Hum Mol Genet ; 30(22): 2161-2176, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34230964

RESUMO

Severe respiratory impairment is a prominent feature of Rett syndrome, an X-linked disorder caused by mutations in methyl CpG-binding protein 2 (MECP2). Despite MECP2's ubiquitous expression, respiratory anomalies are attributed to neuronal dysfunction. Here, we show that neutral lipids accumulate in mouse Mecp2-mutant lungs, whereas surfactant phospholipids decrease. Conditional deletion of Mecp2 from lipid-producing alveolar epithelial 2 (AE2) cells causes aberrant lung lipids and respiratory symptoms, whereas deletion of Mecp2 from hindbrain neurons results in distinct respiratory abnormalities. Single-cell RNA sequencing of AE2 cells suggests lipid production and storage increase at the expense of phospholipid synthesis. Lipid production enzymes are confirmed as direct targets of MECP2-directed nuclear receptor co-repressor 1/2 transcriptional repression. Remarkably, lipid-lowering fluvastatin improves respiratory anomalies in Mecp2-mutant mice. These data implicate autonomous pulmonary loss of MECP2 in respiratory symptoms for the first time and have immediate impacts on patient care.


Assuntos
Metabolismo dos Lipídeos , Pulmão/metabolismo , Pulmão/fisiopatologia , Proteína 2 de Ligação a Metil-CpG/deficiência , Síndrome de Rett/etiologia , Síndrome de Rett/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fluvastatina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/genética , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Mutação , Correpressor 1 de Receptor Nuclear , Fenótipo , Ligação Proteica , Surfactantes Pulmonares/metabolismo , Síndrome de Rett/diagnóstico , Síndrome de Rett/tratamento farmacológico
3.
Am J Respir Crit Care Med ; 199(6): 760-772, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326731

RESUMO

RATIONALE: Premature infants subjected to mechanical ventilation (MV) are prone to lung injury that may result in bronchopulmonary dysplasia. MV causes epithelial cell death and halts alveolar development. The exact mechanism of MV-induced epithelial cell death is unknown. OBJECTIVES: To determine the contribution of autophagy to MV-induced epithelial cell death in newborn rat lungs. METHODS: Newborn rat lungs and fetal rat lung epithelial (FRLE) cells were exposed to MV and cyclic stretch, respectively, and were then analyzed by immunoblotting and mass spectrometry for autophagy, apoptosis, and bioactive sphingolipids. MEASUREMENTS AND MAIN RESULTS: Both MV and stretch first induce autophagy (ATG 5-12 [autophagy related 5-12] and LC3B-II [microtubule-associated proteins 1A/1B light chain 3B-II] formation) followed by extrinsic apoptosis (cleaved CASP8/3 [caspase-8/3] and PARP [poly(ADP-ribose) polymerase] formation). Stretch-induced apoptosis was attenuated by inhibiting autophagy. Coimmunoprecipitation revealed that stretch promoted an interaction between LC3B and the FAS (first apoptosis signal) cell death receptor in FRLE cells. Ceramide levels, in particular C16 ceramide, were rapidly elevated in response to ventilation and stretch, and C16 ceramide treatment of FRLE cells induced autophagy and apoptosis in a temporal pattern similar to that seen with MV and stretch. SMPD1 (sphingomyelin phosphodiesterase 1) was activated by ventilation and stretch, and its inhibition prevented ceramide production, LC3B-II formation, LC3B/first apoptosis signal interaction, caspase-3 activation, and, ultimately, FLRE cell death. SMPD1 inhibition also attenuated ventilation-induced autophagy and apoptosis in newborn rats. CONCLUSIONS: Ventilation-induced ceramides promote autophagy-mediated cell death, and identifies SMPD1 as a potential therapeutic target for the treatment of ventilation-induced lung injury in newborns.


Assuntos
Morte Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Recém-Nascido/fisiologia , Pulmão/metabolismo , Respiração Artificial , Esfingomielina Fosfodiesterase/metabolismo , Animais , Animais Recém-Nascidos , Humanos , Modelos Animais , Ratos
4.
Nanomedicine ; 14(4): 1137-1148, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29471172

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain tumor resulting in high rates of morbidity and mortality. A strategy to increase the efficacy of available drugs and enhance the delivery of chemotherapeutics through the blood brain barrier (BBB) is desperately needed. We investigated the potential of Cisplatin conjugated gold nanoparticle (GNP-UP-Cis) in combination with MR-guided Focused Ultrasound (MRgFUS) to intensify GBM treatment. Viability assays demonstrated that GNP-UP-Cis greatly inhibits the growth of GBM cells compared to free cisplatin and shows marked synergy with radiation therapy. Additionally, increased DNA damage through γH2AX phosphorylation was observed in GNP-UP-Cis treated cells, along with enhanced platinum concentrations. In vivo, GNP-UP-Cis greatly reduced the growth of GBM tumors and MRgFUS led to increased BBB permeability and GNP-drug delivery in brain tissue. Our studies suggest that GNP-Cis conjugates and MRgFUS can be used to focally enhance the delivery of targeted chemotherapeutics to brain tumors.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Cisplatino/uso terapêutico , Glioblastoma/tratamento farmacológico , Ouro/química , Nanopartículas Metálicas/química , Ondas Ultrassônicas , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/metabolismo , Cisplatino/administração & dosagem , Cisplatino/química , Cisplatino/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Camundongos , Camundongos SCID , Microscopia Confocal
5.
Am J Respir Crit Care Med ; 193(11): 1219-29, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26730942

RESUMO

RATIONALE: Abnormal alveolar macrophages (AM) are found in chronic obstructive pulmonary disease, asthma, cystic fibrosis, and adenosine deaminase deficiency (ADA(-/-)). There is no specific treatment strategy to compensate for these innate immune abnormalities. Recent findings suggest AMs are of early embryonic or fetal origin. Pluripotent stem cells (PSCs) as a source of embryonic-derived AMs for therapeutic use in acute and chronic airway diseases has yet to be investigated. OBJECTIVES: To determine if embryonic Myb(-/-) alveolar-like macrophages have therapeutic value on pulmonary transplantation in acute and chronic airway diseases. METHODS: Directed differentiation of murine PSCs was used in factor-defined media to produce expandable embryonic macrophages conditioned to an alveolar-like phenotype with granulocyte-macrophage colony-stimulating factor. AMs were partially depleted in mice to create an acute lung injury. To model a chronic lung disease, ADA(-/-) mice were used. Alveolar-like macrophages were intratracheally transplanted to the injured animals and therapeutic potential was determined. MEASUREMENTS AND MAIN RESULTS: The differentiation protocol is highly efficient and adaptable to human PSCs. The PSC macrophages are phenotypically like AMs both functionally and by ligand marker characterization. They engulf bacteria and apoptotic cells and are better phagocytes than bone marrow-derived macrophages. In vivo, these macrophages remain in healthy airways for at least 4 weeks, can engulf neutrophils during acute lung injury, enhance pulmonary tissue repair, and promote survival in ADA(-/-) mice. Animals receiving the macrophages do not develop abnormal pathology or teratomas. CONCLUSIONS: PSCs are a reliable source to produce therapeutically active alveolar-like macrophages to treat airway disease.


Assuntos
Lesão Pulmonar Aguda/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Células-Tronco Pluripotentes/imunologia , Células-Tronco Pluripotentes/metabolismo , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Pulmão/imunologia , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência
6.
Am J Respir Cell Mol Biol ; 52(4): 448-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25180700

RESUMO

This study investigated whether hypoxia-inducible factor (HIF)-1 influences postnatal vascularization and alveologenesis in mice and whether stable (constitutive-active) HIF could prevent hyperoxia-induced lung injury. We assessed postnatal vessel and alveolar formation in transgenic mice, expressing a stable, constitutive-active, HIF1α-subunit (HIF-1αΔODD) in the distal lung epithelium. In addition, we compared lung function, histology, and morphometry of neonatal transgenic and wild-type mice subjected to hyperoxia. We found that postnatal lungs of HIF-1αΔODD mice had a greater peripheral vessel density and displayed advanced alveolarization compared with control lungs. Stable HIF-1α expression was associated with increased postnatal expression of angiogenic factors, including vascular endothelial growth factor, angiopoietins 1 and 2, Tie2, and Ephrin B2 and B4. Hyperoxia-exposed neonatal HIF-1αΔODD mice exhibited worse lung function but had similar histological and surfactant abnormalities compared with hyperoxia-exposed wild-type controls. In conclusion, expression of constitutive-active HIF-1α in the lung epithelium was associated with increased postnatal vessel growth via up-regulation of angiogenic factors. The increase in postnatal vasculature was accompanied by enhanced alveolar formation. However, stable HIF-1α expression in the distal lung did not prevent hyperoxia-induced lung injury in neonates but instead worsened lung function.


Assuntos
Hiperóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Pulmão/metabolismo , Alvéolos Pulmonares/patologia , Animais , Células HEK293 , Humanos , Hiperóxia/patologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Alvéolos Pulmonares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Am J Physiol Endocrinol Metab ; 309(5): E466-73, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26152763

RESUMO

Severe malnutrition is a leading cause of global childhood mortality, and infection and hypoglycemia or hyperglycemia are commonly present. The etiology behind the changes in glucose homeostasis is poorly understood. Here, we generated an animal model of severe malnutrition with and without low-grade inflammation to investigate the effects on glucose homeostasis. Immediately after weaning, rats were fed diets containing 5 [low-protein diet (LP)] or 20% protein [control diet (CTRL)], with or without repeated low-dose intraperitoneal lipopolysaccharide (LPS; 2 mg/kg), to mimic inflammation resulting from infections. After 4 wk on the diets, hyperglycemic clamps or euglycemic hyperinsulinemic clamps were performed with infusion of [U-(13)C6]glucose and [2-(13)C]glycerol to assess insulin secretion, action, and hepatic glucose metabolism. In separate studies, pancreatic islets were isolated for further analyses of insulin secretion and islet morphometry. Glucose clearance was reduced significantly by LP feeding alone (16%) and by LP feeding with LPS administration (43.8%) compared with control during the hyperglycemic clamps. This was associated with a strongly reduced insulin secretion in LP-fed rats in vivo as well as ex vivo in islets but signficantly enhanced whole body insulin sensitivity. Gluconeogenesis rates were unaffected by LP feeding, but glycogenolysis was higher after LP feeding. A protein-deficient diet in young rats leads to a susceptibility to low-dose endotoxin-induced impairment in glucose clearance with a decrease in the islet insulin secretory pathway. A protein-deficient diet is associated with enhanced peripheral insulin sensitivity but impaired insulin-mediated suppression of hepatic glycogenolysis.


Assuntos
Glicemia/metabolismo , Dieta com Restrição de Proteínas , Inflamação/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Desnutrição Proteico-Calórica/metabolismo , Animais , Glicemia/efeitos dos fármacos , Isótopos de Carbono , Modelos Animais de Doenças , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/fisiologia , Glucose/farmacologia , Técnica Clamp de Glucose , Glicerol/farmacologia , Glicogenólise/efeitos dos fármacos , Glicogenólise/fisiologia , Homeostase/efeitos dos fármacos , Inflamação/induzido quimicamente , Resistência à Insulina , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Desnutrição/metabolismo , Ratos
8.
Ann Neurol ; 75(3): 442-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24419970

RESUMO

Ubiquitin ligases regulate quantities and activities of target proteins, often pleiotropically. The malin ubiquitin E3 ligase is reported to regulate autophagy, the misfolded protein response, microRNA silencing, Wnt signaling, neuronatin-mediated endoplasmic reticulum stress, and the laforin glycogen phosphatase. Malin deficiency causes Lafora disease, pathologically characterized by neurodegeneration and accumulations of malformed glycogen (Lafora bodies). We show that reducing glycogen production in malin-deficient mice by genetically removing PTG, a glycogen synthesis activator protein, nearly completely eliminates Lafora bodies and rescues the neurodegeneration, myoclonus, seizure susceptibility, and behavioral abnormality. Glycogen synthesis downregulation is a potential therapy for the fatal adolescence onset epilepsy Lafora disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Doença de Lafora/enzimologia , Doença de Lafora/terapia , Ubiquitina-Proteína Ligases/deficiência , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Condicionamento Psicológico , Regulação para Baixo , Medo/psicologia , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Lafora/psicologia , Camundongos , Camundongos Knockout , Mioclonia/enzimologia , Mioclonia/genética , Mioclonia/terapia , Fármacos Neuroprotetores/metabolismo , Placa Amiloide , Convulsões/enzimologia , Convulsões/genética , Convulsões/terapia
9.
J Biol Chem ; 288(48): 34627-37, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24142699

RESUMO

Glycogen synthesis is a major component of the insulin response, and defective glycogen synthesis is a major portion of insulin resistance. Insulin regulates glycogen synthase (GS) through incompletely defined pathways that activate the enzyme through dephosphorylation and, more potently, allosteric activation. We identify Epm2aip1 as a GS-associated protein. We show that the absence of Epm2aip1 in mice impairs allosteric activation of GS by glucose 6-phosphate, decreases hepatic glycogen synthesis, increases liver fat, causes hepatic insulin resistance, and protects against age-related obesity. Our work identifies a novel GS-associated GS activity-modulating component of insulin resistance.


Assuntos
Fosfatases de Especificidade Dupla/genética , Glicogênio Sintase/metabolismo , Glicogênio/biossíntese , Resistência à Insulina/genética , Obesidade/patologia , Envelhecimento/genética , Animais , Fosfatases de Especificidade Dupla/metabolismo , Glucose-6-Fosfato/metabolismo , Glicogênio/genética , Glicogênio Sintase/genética , Humanos , Insulina/genética , Insulina/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Obesidade/etiologia , Obesidade/genética , Fosforilação , Proteínas Tirosina Fosfatases não Receptoras
10.
Ann Neurol ; 74(2): 297-300, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23913475

RESUMO

Lafora disease (LD) is a fatal progressive myoclonus epilepsy characterized neuropathologically by aggregates of abnormally structured glycogen and proteins (Lafora bodies [LBs]), and neurodegeneration. Whether LBs could be prevented by inhibiting glycogen synthesis and whether they are pathogenic remain uncertain. We genetically eliminated brain glycogen synthesis in LD mice. This resulted in long-term prevention of LB formation, neurodegeneration, and seizure susceptibility. This study establishes that glycogen synthesis is requisite for LB formation and that LBs are pathogenic. It opens a therapeutic window for potential treatments in LD with known and future small molecule inhibitors of glycogen synthesis.


Assuntos
Glicogênio/antagonistas & inibidores , Glicogênio/biossíntese , Doença de Lafora/prevenção & controle , Animais , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/genética , Técnicas de Inativação de Genes , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Doença de Lafora/patologia , Doença de Lafora/fisiopatologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Tirosina Fosfatases não Receptoras
11.
PLoS Genet ; 7(4): e1002037, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21552327

RESUMO

Lafora disease is the most common teenage-onset neurodegenerative disease, the main teenage-onset form of progressive myoclonus epilepsy (PME), and one of the severest epilepsies. Pathologically, a starch-like compound, polyglucosan, accumulates in neuronal cell bodies and overtakes neuronal small processes, mainly dendrites. Polyglucosan formation is catalyzed by glycogen synthase, which is activated through dephosphorylation by glycogen-associated protein phosphatase-1 (PP1). Here we remove PTG, one of the proteins that target PP1 to glycogen, from mice with Lafora disease. This results in near-complete disappearance of polyglucosans and in resolution of neurodegeneration and myoclonic epilepsy. This work discloses an entryway to treating this fatal epilepsy and potentially other glycogen storage diseases.


Assuntos
Glucanos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Lafora/fisiopatologia , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Glucanos/análise , Glicogênio Sintase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Lafora/genética , Camundongos , Camundongos Knockout
12.
Am J Respir Cell Mol Biol ; 49(4): 627-36, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23713442

RESUMO

The disruption of angiogenic pathways, whether through genetic predisposition or as a consequence of life-saving interventions, may underlie many pulmonary diseases of infancy, including bronchopulmonary dysplasia. Neuropilin-1 (Nrp1) is a transmembrane receptor that plays essential roles in normal and pathological vascular development and binds two distinct ligand families: vascular endothelial growth factor (Vegf) and class 3 semaphorins (Sema3). Although Nrp1 is critical for systemic vascular development, the importance of Nrp1 in pulmonary vascular morphogenesis is uncertain. We hypothesized that Sema3-Nrp1 and Vegf-Nrp1 interactions are important pathways in the orchestration of pulmonary vascular development during alveolarization. Complete ablation of Nrp1 signaling would therefore lead to interruption of normal angiogenic and vascular maturation processes that are relevant to the pathogenesis of bronchopulmonary dysplasia. We have previously shown that congenital loss of Sema3-Nrp1 signaling in transgenic Nrp1(Sema-) mice resulted in disrupted alveolar-capillary interface formation and high neonatal mortality. Here, pathohistological examination of Nrp1(Sema-) survivors in the alveolar period revealed moderate to severe respiratory distress, alveolar hemorrhaging, abnormally dilated capillaries, and disintegrating alveolar septa, demonstrating continued instability of the alveolar-capillary interface. Moreover, consistent with a reduced capillary density and consequent increases in vascular resistance, hypertensive remodeling was observed. In contrast, conditional Nrp1 deletion beginning at postnatal day 5 had only a transient effect upon alveolar and vascular development or pneumocyte differentiation despite an increase in mortality. Our results demonstrate that although Sema3-Nrp1 signaling is critical during fetal pulmonary development, Nrp1 signaling does not appear to be essential for alveolar development or vascular function in the postnatal period.


Assuntos
Feto/embriologia , Neuropilina-1/genética , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/metabolismo , Semaforinas/genética , Animais , Capilares/metabolismo , Endotélio Vascular/metabolismo , Feminino , Feto/metabolismo , Masculino , Camundongos , Neuropilina-1/metabolismo , Gravidez , Semaforinas/metabolismo , Deleção de Sequência/genética , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
J Biol Chem ; 287(30): 25650-9, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22669944

RESUMO

The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively. The substrate and function of malin are unknown; an early counterintuitive observation in cell culture experiments that it targets laforin to proteasomal degradation was not pursued until now. The substrate and function of laforin have recently been elucidated. Laforin dephosphorylates glycogen during synthesis, without which phosphate ions interfere with and distort glycogen construction, leading to LB. We hypothesized that laforin in excess or not removed following its action on glycogen also interferes with glycogen formation. We show in malin-deficient mice that the absence of malin results in massively increased laforin preceding the appearance of LB and that laforin gradually accumulates in glycogen, which corresponds to progressive LB generation. We show that increasing the amounts of laforin in cell culture causes LB formation and that this occurs only with glycogen binding-competent laforin. In summary, malin deficiency causes increased laforin, increased laforin binding to glycogen, and LB formation. Furthermore, increased levels of laforin, when it can bind glycogen, causes LB. We conclude that malin functions to regulate laforin and that malin deficiency at least in part causes LB and LD through increased laforin binding to glycogen.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Glicogênio/metabolismo , Doença de Lafora/enzimologia , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Animais , Células Cultivadas , Fosfatases de Especificidade Dupla/genética , Feminino , Glicogênio/genética , Humanos , Doença de Lafora/genética , Doença de Lafora/patologia , Masculino , Camundongos , Camundongos Knockout , Fosforilação/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/genética , Proteínas Tirosina Fosfatases não Receptoras , Ubiquitina-Proteína Ligases/genética
14.
Am J Pathol ; 181(6): 2003-17, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23063659

RESUMO

Respiratory diseases of the newborn can arise from the disruption of essential angiogenic pathways. Neuropilin-1 (NRP1), which is a critical receptor implicated in systemic vascular growth and remodeling, binds two distinct ligand families: vascular endothelial growth factor (VEGF) and class 3 semaphorins (SEMA3). Although the function of VEGF-NRP1 interactions in vascular development is well described, the importance of SEMA3-NRP1 signaling in systemic or pulmonary vascular morphogenesis is debated. We sought to characterize the effect of deficient SEMA3-NRP1 signaling on fetal pulmonary vascular development in a mouse model. Temporospatial expression of Nrp1 and Sema3 mRNA and protein during murine fetal lung development was investigated, and the development of the pulmonary vasculature in transgenic mice deficient in Sema3-Nrp1 signaling was examined by histology, immunostaining, and electron microscopy. Loss of Sema3-Nrp1 signaling resulted in acute respiratory distress and high neonatal mortality. Pathohistological examination of mutants revealed immature and atelectatic regions in the lung, severely reduced capillary density, thickened alveolar septa containing centrally located dilated capillaries, hypertensive changes in arteriolar walls, anomalous and misaligned pulmonary veins, and reduced pulmonary surfactant secretion. Notably, many features are reminiscent of the fatal pulmonary disorder alveolar capillary dysplasia. These findings indicate a critical role for Sema3-Nrp1 signaling in fetal pulmonary development, which may have clinical relevance for treatment of various neonatal respiratory disorders, including alveolar capillary dysplasia.


Assuntos
Pulmão/irrigação sanguínea , Pulmão/patologia , Neovascularização Patológica/patologia , Neuropilina-1/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Semaforinas/metabolismo , Transdução de Sinais , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/ultraestrutura , Animais , Animais Recém-Nascidos , Bronquíolos/metabolismo , Bronquíolos/patologia , Bronquíolos/fisiopatologia , Bronquíolos/ultraestrutura , Movimento Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/ultraestrutura , Feto/metabolismo , Regulação da Expressão Gênica , Ligantes , Pulmão/embriologia , Pulmão/metabolismo , Camundongos , Microvasos/patologia , Neovascularização Patológica/genética , Neuropilina-1/genética , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Síndrome da Persistência do Padrão de Circulação Fetal/fisiopatologia , Alvéolos Pulmonares/anormalidades , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Surfactantes Pulmonares/metabolismo , Ratos , Transdução de Sinais/genética , Grau de Desobstrução Vascular
15.
Mol Genet Metab ; 108(1): 40-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23266196

RESUMO

We report on two families with Sengers syndrome and mutations in the acylglycerol kinase gene (AGK). In the first family, two brothers presented with vascular strokes, lactic acidosis, cardiomyopathy and cataracts, abnormal muscle cell histopathology and mitochondrial function. One proband had very abnormal mitochondria with citrate synthase crystals visible in electron micrographs, associated with markedly high citrate synthase activity. Exome sequencing was used to identify mutations in the AGK gene in the index patient. Targeted sequencing confirmed the same homozygous mutation (c.3G>A, p.M1I) in the brother. The second family had four affected members, of which we examined two. They also presented with similar clinical symptoms, but no strokes. Postmortem heart and skeletal muscle tissues showed low complex I, III and IV activities in the heart, but normal in the muscle. Skin fibroblasts showed elevated lactate/pyruvate ratios and low complex I+III activity. Targeted sequencing led to identification of a homozygous c.979A>T, p.K327* mutation. AGK is located in the mitochondria and phosphorylates monoacylglycerol and diacylglycerol to lysophosphatidic acid and phosphatidic acid. Disruption of these signaling molecules affects the mitochondria's response to superoxide radicals, resulting in oxidative damage to mitochondrial DNA, lipids and proteins, and stimulation of cellular detoxification pathways. High levels of manganese superoxide dismutase protein were detected in all four affected individuals, consistent with increased free radical damage. Phosphatidic acid is also involved in the synthesis of phospholipids and its loss will result in changes to the lipid composition of the inner mitochondrial membrane. These effects manifest as cataract formation in the eye, respiratory chain dysfunction and cardiac hypertrophy in heart tissue. These two pedigrees confirm that mutation of AGK is responsible for the severe neonatal presentation of Sengers syndrome. The identification of citrate synthase precipitates by electron microscopy and the presence of vascular strokes in two siblings may expand the cellular and clinical phenotype of this disease.


Assuntos
Cardiomiopatias/enzimologia , Catarata/enzimologia , Citrato (si)-Sintase/química , Mitocôndrias/enzimologia , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Sequência de Bases , Pré-Escolar , Cristalização , Primers do DNA , Feminino , Humanos , Lactente , Masculino , Linhagem
16.
Acta Neuropathol ; 125(3): 439-57, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23315026

RESUMO

X-linked Myopathy with Excessive Autophagy (XMEA) is a childhood onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p, VMA21 is an essential assembly chaperone of the vacuolar ATPase (V-ATPase), the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH which reduces lysosomal degradative ability and blocks autophagy. This reduces cellular free amino acids which leads to downregulation of the mTORC1 pathway, and consequent increased macroautophagy resulting in proliferation of large and ineffective autolysosomes that engulf sections of cytoplasm, merge, and vacuolate the cell. Our results uncover a novel mechanism of disease, namely macroautophagic overcompensation leading to cell vacuolation and tissue atrophy.


Assuntos
Adenosina Trifosfatases/metabolismo , Autofagia/genética , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/prevenção & controle , Doenças Musculares/genética , Doenças Musculares/prevenção & controle , ATPases Vacuolares Próton-Translocadoras/deficiência , ATPases Vacuolares Próton-Translocadoras/genética , Animais , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Leucina/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/genética , Lisossomos/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Doenças Musculares/patologia , Mutação/genética , Interferência de RNA/fisiologia , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Frações Subcelulares/patologia , Fatores de Tempo , Vacúolos/metabolismo
17.
Brain ; 135(Pt 9): 2684-98, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22961547

RESUMO

The most common progressive myoclonus epilepsies are the late infantile and late infantile-variant neuronal ceroid lipofuscinoses (onset before the age of 6 years), Unverricht-Lundborg disease (onset after the age of 6 years) and Lafora disease. Lafora disease is a distinct disorder with uniform course: onset in teenage years, followed by progressively worsening myoclonus, seizures, visual hallucinations and cognitive decline, leading to a vegetative state in status myoclonicus and death within 10 years. Biopsy reveals Lafora bodies, which are pathognomonic and not seen with any other progressive myoclonus epilepsies. Lafora bodies are aggregates of polyglucosans, poorly constructed glycogen molecules with inordinately long strands that render them insoluble. Lafora disease is caused by mutations in the EPM2A or EPM2B genes, encoding the laforin phosphatase and the malin ubiquitin ligase, respectively, two cytoplasmically active enzymes that regulate glycogen construction, ensuring symmetric expansion into a spherical shape, essential to its solubility. In this work, we report a new progressive myoclonus epilepsy associated with Lafora bodies, early-onset Lafora body disease, map its locus to chromosome 4q21.21, identify its gene and mutation and characterize the relationship of its gene product with laforin and malin. Early-onset Lafora body disease presents early, at 5 years, with dysarthria, myoclonus and ataxia. The combination of early-onset and early dysarthria strongly suggests late infantile-variant neuronal ceroid lipofuscinosis, not Lafora disease. Pathology reveals no ceroid lipofuscinosis, but Lafora bodies. The subsequent course is a typical progressive myoclonus epilepsy, though much more protracted than any infantile neuronal ceroid lipofuscinosis, or Lafora disease, patients living into the fourth decade. The mutation, c.781T>C (Phe261Leu), is in a gene of unknown function, PRDM8. We show that the PRDM8 protein interacts with laforin and malin and causes translocation of the two proteins to the nucleus. We find that Phe261Leu-PRDM8 results in excessive sequestration of laforin and malin in the nucleus and that it therefore likely represents a gain-of-function mutation that leads to an effective deficiency of cytoplasmic laforin and malin. We have identified a new progressive myoclonus epilepsy with Lafora bodies, early-onset Lafora body disease, 101 years after Lafora disease was first described. The results to date suggest that PRDM8, the early-onset Lafora body disease protein, regulates the cytoplasmic quantities of the Lafora disease enzymes.


Assuntos
Encéfalo/patologia , Proteínas de Transporte/genética , Doença de Lafora/genética , Músculo Esquelético/patologia , Proteínas Nucleares/genética , Adolescente , Adulto , Idade de Início , Atrofia , Criança , Pré-Escolar , Cromossomos Humanos Par 4 , Proteínas de Ligação a DNA , Progressão da Doença , Feminino , Histona Metiltransferases , Humanos , Doença de Lafora/patologia , Escore Lod , Masculino , Mutação , Pele/patologia
18.
Nat Genet ; 35(2): 125-7, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12958597

RESUMO

Lafora progressive myoclonus epilepsy is characterized by pathognomonic endoplasmic reticulum (ER)-associated polyglucosan accumulations. We previously discovered that mutations in EPM2A cause Lafora disease. Here, we identify a second gene associated with this disease, NHLRC1 (also called EPM2B), which encodes malin, a putative E3 ubiquitin ligase with a RING finger domain and six NHL motifs. Laforin and malin colocalize to the ER, suggesting they operate in a related pathway protecting against polyglucosan accumulation and epilepsy.


Assuntos
Proteínas de Transporte/genética , Mutação , Epilepsias Mioclônicas Progressivas/genética , Proteínas Tirosina Fosfatases/genética , Sequência de Bases , Estudos de Coortes , Feminino , Homozigoto , Humanos , Doença de Lafora/genética , Masculino , Dados de Sequência Molecular , Epilepsias Mioclônicas Progressivas/enzimologia , Linhagem , Proteínas Tirosina Fosfatases não Receptoras , Deleção de Sequência , Ubiquitina-Proteína Ligases
19.
Neurobiol Dis ; 47(2): 201-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22521465

RESUMO

Inherited defects in purine nucleoside phosphorylase (PNP) cause severe T cell immunodeficiency and progressive neurological dysfunction, yet little is known about the effects of PNP deficiency on the brain. PNP-KO mice display metabolic and immune anomalies similar to those observed in patients. Our objectives were to characterize brain abnormalities in PNP-KO mice and determine whether restoring PNP activity prevents these abnormalities. We analyzed structural brain defects in PNP-KO mice by magnetic resonance imaging, while assessing motor deficits using the accelerating rotarod and stationary balance beam tests. We detected morphological abnormalities and apoptosis in the cerebellum of PNP-KO mice by hematoxylin and eosin, electron microscopy, TUNEL and activated caspase 3 staining. We treated PNP-KO mice with PNP fused to the HIV-TAT protein transduction domain (TAT-PNP) from birth or from 4 weeks of age. Magnetic resonance imaging revealed a smaller than normal cerebellum in PNP-KO mice. PNP-KO mice displayed motor abnormalities including rapid fall from the rotating rod and frequent slips from the balance beam. The cerebellum of PNP-KO mice contained reduced purkinje cells (PC), which were irregular in shape and had degenerated dendrites. PC from the cerebellum of PNP-KO mice, expanded ex vivo, demonstrated increased apoptosis, which could be corrected by supplementing cultures with TAT-PNP. TAT-PNP injections restored PNP activity in the cerebellum of PNP-KO mice. TAT-PNP from birth, but not treatment initiated at 4 weeks of age, prevented the cerebellar PC damage and motor deficits. We conclude that PNP deficiency cause cerebellar abnormalities, including PC damage and progressive motor deficits. TAT-PNP treatment from birth can prevent the neurological abnormalities in PNP-KO mice.


Assuntos
Doenças Cerebelares/enzimologia , Doenças Cerebelares/patologia , Purina-Núcleosídeo Fosforilase/deficiência , Purina-Núcleosídeo Fosforilase/metabolismo , Animais , Doenças Cerebelares/tratamento farmacológico , Cerebelo/anormalidades , Cerebelo/enzimologia , Cerebelo/patologia , Progressão da Doença , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Purina-Núcleosídeo Fosforilase/genética , Células de Purkinje/enzimologia , Células de Purkinje/patologia
20.
Proc Natl Acad Sci U S A ; 106(33): 14085-90, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666602

RESUMO

In a mouse mutagenesis screen, we isolated a mutant, Myshkin (Myk), with autosomal dominant complex partial and secondarily generalized seizures, a greatly reduced threshold for hippocampal seizures in vitro, posttetanic hyperexcitability of the CA3-CA1 hippocampal pathway, and neuronal degeneration in the hippocampus. Positional cloning and functional analysis revealed that Myk/+ mice carry a mutation (I810N) which renders the normally expressed Na(+),K(+)-ATPase alpha3 isoform inactive. Total Na(+),K(+)-ATPase activity was reduced by 42% in Myk/+ brain. The epilepsy in Myk/+ mice and in vitro hyperexcitability could be prevented by delivery of additional copies of wild-type Na(+),K(+)-ATPase alpha3 by transgenesis, which also rescued Na(+),K(+)-ATPase activity. Our findings reveal the functional significance of the Na(+),K(+)-ATPase alpha3 isoform in the control of epileptiform activity and seizure behavior.


Assuntos
Sistema Nervoso Central/metabolismo , Mutação , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Convulsões/genética , Convulsões/patologia , Homologia de Sequência do Ácido Nucleico , ATPase Trocadora de Sódio-Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA