Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 457(7225): 67-70, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19122637

RESUMO

Quantum mechanics places a fundamental limit on the accuracy of measurements. In most circumstances, the measurement uncertainty is distributed equally between pairs of complementary properties; this leads to the 'standard quantum limit' for measurement resolution. Using a technique known as 'squeezing', it is possible to reduce the uncertainty of one desired property below the standard quantum limit at the expense of increasing that of the complementary one. Squeezing is already being used to enhance the sensitivity of gravity-wave detectors and may play a critical role in other high precision applications, such as atomic clocks and optical communications. Spin squeezing (the squeezing of angular momentum variables) is a powerful tool, particularly in the context of quantum light-matter interfaces. Although impressive gains in squeezing have been made, optical spin-squeezed systems are still many orders of magnitude away from the maximum possible squeezing, known as the Heisenberg uncertainty limit. Here we demonstrate how an optical system can be squeezed essentially all the way to this fundamental bound. We construct spin-squeezed states by overlapping three indistinguishable photons in an optical fibre and manipulating their polarization (spin), resulting in the formation of a squeezed composite particle known as a 'triphoton'. The symmetry properties of polarization imply that the measured triphoton states can be most naturally represented by quasi-probability distributions on the surface of a sphere. In this work we show that the spherical topology of polarization imposes a limit on how much squeezing can occur, leading to the quasi-probability distributions wrapping around the sphere-a phenomenon we term 'over-squeezing'. Our observations of spin-squeezing in the few-photon regime could lead to new quantum resources for enhanced measurement, lithography and information processing that can be precisely engineered photon-by-photon.

2.
Biomed Opt Express ; 13(4): 1834-1854, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519239

RESUMO

In this study, we demonstrate a sparsity-regularized, complex, blind deconvolution method for removing sidelobe artefacts and stochastic noise from optical coherence tomography (OCT) images. Our method estimates the complex scattering amplitude of tissue on a line-by-line basis by estimating and deconvolving the complex, one-dimensional axial point spread function (PSF) from measured OCT A-line data. We also present a strategy for employing a sparsity weighting mask to mitigate the loss of speckle brightness within tissue-containing regions caused by the sparse deconvolution. Qualitative and quantitative analyses show that this approach suppresses sidelobe artefacts and background noise better than traditional spectral reshaping techniques, with negligible loss of tissue structure. The technique is particularly useful for emerging OCT applications where OCT images contain strong specular reflections at air-tissue boundaries that create large sidelobe artefacts.

3.
Phys Rev Lett ; 105(3): 030406, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867751

RESUMO

When used in quantum state estimation, projections onto mutually unbiased bases have the ability to maximize information extraction per measurement and to minimize redundancy. We present the first experimental demonstration of quantum state tomography of two-qubit polarization states to take advantage of mutually unbiased bases. We demonstrate improved state estimation as compared to standard measurement strategies and discuss how this can be understood from the structure of the measurements we use. We experimentally compared our method to the standard state estimation method for three different states and observe that the infidelity was up to 1.84 ± 0.06 times lower by using our technique than it was by using standard state estimation methods.

4.
J Acoust Soc Am ; 128(4): 2003-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20968371

RESUMO

A prototype of a novel bone-conduction hearing actuator based on a piezoelectric bending actuator is presented. The device lies flat against the skull which would allow it to form the basis of a subcutaneous bone-anchored hearing aid. The actuator excites bending in bone through a local bending moment rather than the application of a point force as with conventional bone-anchored hearing aids. Through measurements of the cochlear velocity created by the actuator in embalmed human heads, the device is shown to exhibit high efficiency, making it a possible alternative to present-day electromagnetic bone-vibration actuators.


Assuntos
Condução Óssea , Auxiliares de Audição , Perda Auditiva/reabilitação , Idoso , Cadáver , Elasticidade , Desenho de Equipamento , Feminino , Perda Auditiva/fisiopatologia , Humanos , Masculino , Teste de Materiais , Mecanotransdução Celular , Pessoa de Meia-Idade , Crânio/anatomia & histologia , Vibração
5.
Phys Rev Lett ; 98(4): 043601, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17358765

RESUMO

We address the problem of completely characterizing multiparticle states including loss of information to unobserved degrees of freedom. In systems where nonclassical interference plays a role, such as linear-optics quantum gates, such information can degrade interference in two ways, by decoherence and by distinguishing the particles. Distinguishing information, often the limiting factor for quantum optical devices, is not correctly described by previous state-reconstruction techniques, which account only for decoherence. We extend these techniques and find that a single modified density matrix can completely describe partially coherent, partially distinguishable states. We use this observation to experimentally characterize two-photon polarization states in single-mode optical fiber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA