Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33268383

RESUMO

Activation of energy-dissipating brown/beige adipocytes represents an attractive therapeutic strategy against metabolic disorders. While lactate is known to induce beiging through the regulation of Ucp1 gene expression, the role of lactate transporters on beige adipocytes' ongoing metabolic activity remains poorly understood. To explore the function of the lactate-transporting monocarboxylate transporters (MCTs), we used a combination of primary cell culture studies, 13C isotopic tracing, laser microdissection experiments, and in situ immunofluorescence of murine adipose fat pads. Dissecting white adipose tissue heterogeneity revealed that the MCT1 is expressed in inducible beige adipocytes as the emergence of uncoupling protein 1 after cold exposure was restricted to a subpopulation of MCT1-expressing adipocytes suggesting MCT1 as a marker of inducible beige adipocytes. We also observed that MCT1 mediates bidirectional and simultaneous inward and outward lactate fluxes, which were required for efficient utilization of glucose by beige adipocytes activated by the canonical ß3-adrenergic signaling pathway. Finally, we demonstrated that significant lactate import through MCT1 occurs even when glucose is not limiting, which feeds the oxidative metabolism of beige adipocytes. These data highlight the key role of lactate fluxes in finely tuning the metabolic activity of beige adipocytes according to extracellular metabolic conditions and reinforce the emerging role of lactate metabolism in the control of energy homeostasis.


Assuntos
Adipócitos Bege/metabolismo , Regulação da Expressão Gênica , Ácido Láctico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Adipócitos Bege/citologia , Animais , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Ácidos Monocarboxílicos/genética , Transdução de Sinais , Simportadores/genética , Termogênese
2.
Mol Cell Proteomics ; 18(4): 744-759, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700495

RESUMO

The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects.


Assuntos
Espectrometria de Massas/métodos , Células-Tronco Mesenquimais/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Oxigênio/farmacologia , Reprodutibilidade dos Testes
3.
Digit Health ; 10: 20552076241234746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628633

RESUMO

Background: Out-of-hospital cardiac arrest (OHCA) represents a major burden for society and health care, with an average incidence in adults of 67 to 170 cases per 100,000 person-years in Europe and in-hospital survival rates of less than 10%. Patients and practitioners would benefit from a prognostication tool for long-term good neurological outcomes. Objective: We aim to develop a machine learning (ML) pipeline on a local database to classify patients according to their neurological outcomes and identify prognostic features. Methods: We collected clinical and biological data consecutively from 595 patients who presented OHCA and were routed to a single regional cardiac arrest centre in the south of France. We applied recursive feature elimination and ML analyses to identify the main features associated with a good neurological outcome, defined as a Cerebral Performance Category score less than or equal to 2 at six months post-OHCA. Results: We identified 12 variables 24 h after admission, capable of predicting a six-month good neurological outcome. The best model (extreme gradient boosting) achieved an AUC of 0.96 and an accuracy of 0.92 in the test cohort. Conclusion: We demonstrated that it is possible to build accurate, locally optimised prediction and prognostication scores using datasets of limited size and breadth. We proposed and shared a generic machine-learning pipeline which allows external teams to replicate the approach locally.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38452244

RESUMO

Alzheimer's disease is strongly linked to metabolic abnormalities. We aimed to distinguish amyloid-positive people who progressed to cognitive decline from those who remained cognitively intact. We performed untargeted metabolomics of blood samples from amyloid-positive individuals, before any sign of cognitive decline, to distinguish individuals who progressed to cognitive decline from those who remained cognitively intact. A plasma-derived metabolite signature was developed from Supercritical Fluid chromatography coupled with high-resolution mass spectrometry (SFC-HRMS) and nuclear magnetic resonance (NMR) metabolomics. The 2 metabolomics data sets were analyzed by Data Integration Analysis for Biomarker discovery using Latent approaches for Omics studies (DIABLO), to identify a minimum set of metabolites that could describe cognitive decline status. NMR or SFC-HRMS data alone cannot predict cognitive decline. However, among the 320 metabolites identified, a statistical method that integrated the 2 data sets enabled the identification of a minimal signature of 9 metabolites (3-hydroxybutyrate, citrate, succinate, acetone, methionine, glucose, serine, sphingomyelin d18:1/C26:0 and triglyceride C48:3) with a statistically significant ability to predict cognitive decline more than 3 years before decline. This metabolic fingerprint obtained during this exploratory study may help to predict amyloid-positive individuals who will develop cognitive decline. Due to the high prevalence of brain amyloid-positivity in older adults, identifying adults who will have cognitive decline will enable the development of personalized and early interventions.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Vida Independente , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Disfunção Cognitiva/metabolismo , Encéfalo/metabolismo , Metabolômica , Proteínas Amiloidogênicas , Peptídeos beta-Amiloides/metabolismo , Biomarcadores
5.
J Gerontol A Biol Sci Med Sci ; 78(3): 424-432, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373873

RESUMO

Periostin, involved in extracellular matrix development and support, has been shown to be elevated in senescent tissues and fibrotic states, transversal signatures of aging. We aimed to explore associations between plasma periostin and physical and cognitive capacity evolution among older adults. Our hypothesis was that higher levels of plasma periostin will be associated with worse physical and mental capacities along time. Analyses included 1 096 participants (mean age = 75.3 years ± 4.4; 63.9% women) from the Multidomain Alzheimer Preventive Trial. Periostin levels (pg/mL) were measured in plasma collected at year 1. Periostin was used in continuous variable, and as a dichotomous variable highest quartile (POSTN+) versus lowest 3 quartiles (POSTN-) were used. Outcomes were measured annually over 4 years and included: gait speed (GS), short physical performance battery (SPPB) score, 5-times sit-to-stand test (5-STS), and handgrip strength (HS) as physical and cognitive composite z-score (CCS) and the Mini-Mental State Examination (MMSE) as cognitive endpoints. Plasma periostin as a continuous variable was associated with the worsening of physical and cognitive capacities over 4 years of follow-up, specifically the SPPB score, the 5-STS, and CCS in full-adjusted models. POSTN+ was associated with worse evolution in the physical (GS: [ß = -0.057, 95% confidence interval (CI) = -0.101, -0.013], SPPB score [ß = -0.736, 95% CI = -1.091, -0.381], 5-STS [ß = 1.681, 95% CI = 0.801, 2.561]) as well as cognitive (CCS [ß = -0.215, 95% CI = -0.335, -0.094]) domains compared to POSTN- group. No association was found with HS or the MMSE score. Our study showed for the first time that increased plasma periostin levels were associated with declines in both physical and cognitive capacities in older adults over a 4-year follow-up. Further research is needed to evaluate whether periostin might be used as a predictive biomarker of functional decline at an older age.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Feminino , Humanos , Masculino , Envelhecimento/psicologia , Cognição , Força da Mão , Vida Independente
6.
Aging Cell ; 22(8): e13872, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37300327

RESUMO

Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter-parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty-six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age-specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow-up. These data show that PPA is a robust, quantitative and explainable ML-based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.


Assuntos
Algoritmos , Nível de Saúde , Inquéritos Nutricionais , Aprendizado de Máquina
7.
Cancer Res ; 83(17): 2824-2838, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327406

RESUMO

Identifying mechanisms underlying relapse is a major clinical issue for effective cancer treatment. The emerging understanding of the importance of metastasis in hematologic malignancies suggests that it could also play a role in drug resistance and relapse in acute myeloid leukemia (AML). In a cohort of 1,273 AML patients, we uncovered that the multifunctional scavenger receptor CD36 was positively associated with extramedullary dissemination of leukemic blasts, increased risk of relapse after intensive chemotherapy, and reduced event-free and overall survival. CD36 was dispensable for lipid uptake but fostered blast migration through its binding with thrombospondin-1. CD36-expressing blasts, which were largely enriched after chemotherapy, exhibited a senescent-like phenotype while maintaining their migratory ability. In xenograft mouse models, CD36 inhibition reduced metastasis of blasts and prolonged survival of chemotherapy-treated mice. These results pave the way for the development of CD36 as an independent marker of poor prognosis in AML patients and a promising actionable target to improve the outcome of patients. SIGNIFICANCE: CD36 promotes blast migration and extramedullary disease in acute myeloid leukemia and represents a critical target that can be exploited for clinical prognosis and patient treatment.


Assuntos
Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Leucemia Mieloide Aguda/patologia , Resultado do Tratamento , Prognóstico , Recidiva , Crise Blástica/patologia , Doença Crônica
8.
Elife ; 112022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36546462

RESUMO

Internal ribosome entry sites (IRESs) drive translation initiation during stress. In response to hypoxia, (lymph)angiogenic factors responsible for tissue revascularization in ischemic diseases are induced by the IRES-dependent mechanism. Here, we searched for IRES trans-acting factors (ITAFs) active in early hypoxia in mouse cardiomyocytes. Using knock-down and proteomics approaches, we show a link between a stressed-induced nuclear body, the paraspeckle, and IRES-dependent translation. Furthermore, smiFISH experiments demonstrate the recruitment of IRES-containing mRNA into paraspeckle during hypoxia. Our data reveal that the long non-coding RNA Neat1, an essential paraspeckle component, is a key translational regulator, active on IRESs of (lymph)angiogenic and cardioprotective factor mRNAs. In addition, paraspeckle proteins p54nrb and PSPC1 as well as nucleolin and RPS2, two p54nrb-interacting proteins identified by mass spectrometry, are ITAFs for IRES subgroups. Paraspeckle thus appears as a platform to recruit IRES-containing mRNAs and possibly host IRESome assembly. Polysome PCR array shows that Neat1 isoforms regulate IRES-dependent translation and, more widely, translation of mRNAs involved in stress response.


Assuntos
RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Paraspeckles , Transativadores/metabolismo , Polirribossomos/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Biossíntese de Proteínas
9.
FASEB J ; 24(10): 3882-94, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20522783

RESUMO

The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) pathway has been associated with cancer promotion and progression and resistance to treatments in a number of cancers, including prostate adenocarcinoma. Here we provide the first evidence that dietary agents, namely, epigallocatechin gallate (EGCg, IC(50)≈75 µM), resveratrol (IC(50)≈40 µM), or a mixture of polyphenols from green tea [polyphenon E (PPE), IC(50)≈70 µM] or grapevine extract (vineatrol, IC(50)≈30 µM), impede prostate cancer cell growth in vitro and in vivo by inhibiting the SphK1/S1P pathway. We establish that SphK1 is a downstream effector of the ERK/phospholipase D (PLD) pathway, which is inhibited by green tea and wine polyphenols. Enforced expression of SphK1 impaired the ability of green tea and wine polyphenols, as well as pharmacological inhibitors of PLD and ERK activities, to induce apoptosis in PC-3 and C4-2B cells. The therapeutic efficacy of these polyphenols on tumor growth and the SphK1/S1P pathway were confirmed in animals using a heterotopic PC-3 tumor in place model. PC-3/SphK1 cells implanted in animals developed larger tumors and resistance to treatment with polyphenols. Furthermore, using an orthotopic PC-3/GFP model, the chemopreventive effect of an EGCg or PPE diet was associated with SphK1 inhibition, a decrease in primary tumor volume, and occurrence and number of metastases. These results provide the first demonstration that the prosurvival, antiapoptotic SphK1/S1P pathway represents a target of dietary green tea and wine polyphenols in cancer.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Neoplasias da Próstata/patologia , Chá/química , Vinho/análise , Humanos , Masculino
10.
Front Physiol ; 12: 689747, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276410

RESUMO

Lactate, a metabolite produced when the glycolytic flux exceeds mitochondrial oxidative capacities, is now viewed as a critical regulator of metabolism by acting as both a carbon and electron carrier and a signaling molecule between cells and tissues. In recent years, increasing evidence report its key role in white, beige, and brown adipose tissue biology, and highlights new mechanisms by which lactate participates in the maintenance of whole-body energy homeostasis. Lactate displays a wide range of biological effects in adipose cells not only through its binding to the membrane receptor but also through its transport and the subsequent effect on intracellular metabolism notably on redox balance. This study explores how lactate regulates adipocyte metabolism and plasticity by balancing intracellular redox state and by regulating specific signaling pathways. We also emphasized the contribution of adipose tissues to the regulation of systemic lactate metabolism, their roles in redox homeostasis, and related putative physiopathological repercussions associated with their decline in metabolic diseases and aging.

11.
Mol Biol Cell ; 18(4): 1242-52, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17267693

RESUMO

Gem is a protein of the Ras superfamily that plays a role in regulating voltage-gated Ca2+ channels and cytoskeletal reorganization. We now report that GTP-bound Gem interacts with the membrane-cytoskeleton linker protein Ezrin in its active state, and that Gem binds to active Ezrin in cells. The coexpression of Gem and Ezrin induces cell elongation accompanied by the disappearance of actin stress fibers and collapse of most focal adhesions. The same morphological effect is elicited when cells expressing Gem alone are stimulated with serum and requires the expression of ERM proteins. We show that endogenous Gem down-regulates the level of active RhoA and actin stress fibers. The effects of Gem downstream of Rho, i.e., ERM phosphorylation as well as disappearance of actin stress fibers and most focal adhesions, require the Rho-GAP partner of Gem, Gmip, a protein that is enriched in membranes under conditions in which Gem induced cell elongation. Our results suggest that Gem binds active Ezrin at the plasma membrane-cytoskeleton interface and acts via the Rho-GAP protein Gmip to down-regulate the processes dependent on the Rho pathway.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Células 3T3 , Actinas/metabolismo , Actinas/ultraestrutura , Animais , Adesão Celular , Membrana Celular/metabolismo , Tamanho Celular , Proteínas do Citoesqueleto/genética , Citoesqueleto/metabolismo , Regulação para Baixo , Proteínas Ativadoras de GTPase/genética , Células HeLa , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido , Leveduras/genética
12.
J Physiol Biochem ; 76(2): 241-250, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31898016

RESUMO

Thermogenic (brown and beige) adipose tissues improve glucose and lipid homeostasis and therefore represent putative targets to cure obesity and related metabolic diseases including type II diabetes. Beside decades of research and the very well-described role of noradrenergic signaling, mechanisms underlying adipocytes plasticity and activation of thermogenic adipose tissues remain incompletely understood. Recent studies show that metabolites such as lactate control the oxidative capacity of thermogenic adipose tissues. Long time viewed as a metabolic waste product, lactate is now considered as an important metabolic substrate largely feeding the oxidative metabolism of many tissues, acting as a signaling molecule and as an inter-cellular and inter-tissular redox carrier. In this review, we provide an overview of the recent findings highlighting the importance of lactate in adipose tissues, from its production to its role as a browning inducer and its metabolic links with brown adipose tissue. We also discuss additional function(s) than thermogenesis ensured by brown and beige adipose tissues, i.e., their ability to dissipate high redox pressure and oxidative stress thanks to the activity of the uncoupling protein-1, helping to maintain tissue and whole organism redox homeostasis and integrity.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Ácido Láctico/metabolismo , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Bege/citologia , Tecido Adiposo Marrom/citologia , Animais , Metabolismo Energético , Humanos , Oxirredução , Estresse Oxidativo , Termogênese
13.
Sci Rep ; 9(1): 7250, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076601

RESUMO

Native human subcutaneous adipose tissue (AT) is well organized into unilocular adipocytes interspersed within dense vascularization. This structure is completely lost under standard culture conditions and may impair the comparison with native tissue. Here, we developed a 3-D model of human white AT reminiscent of the cellular architecture found in vivo. Starting with adipose progenitors derived from the stromal-vascular fraction of human subcutaneous white AT, we generated spheroids in which endogenous endothelial cells self-assembled to form highly organized endothelial networks among stromal cells. Using an optimized adipogenic differentiation medium to preserve endothelial cells, we obtained densely vascularized spheroids containing mature adipocytes with unilocular lipid vacuoles. In vivo study showed that when differentiated spheroids were transplanted in immune-deficient mice, endothelial cells within the spheroids connected to the recipient circulatory system, forming chimeric vessels. In addition, adipocytes of human origin were still observed in transplanted mice. We therefore have developed an in vitro model of vascularized human AT-like organoids that constitute an excellent tool and model for any study of human AT.


Assuntos
Adipócitos/citologia , Tecido Adiposo Branco/citologia , Células Estromais/citologia , Adipogenia/fisiologia , Adiposidade/fisiologia , Animais , Diferenciação Celular/fisiologia , Técnicas de Cocultura/métodos , Células Endoteliais/citologia , Feminino , Humanos , Camundongos , Camundongos Nus , Obesidade/patologia , Organoides/citologia , Esferoides Celulares/citologia , Engenharia Tecidual/métodos
14.
Elife ; 82019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31815666

RESUMO

Hypoxia, a major inducer of angiogenesis, triggers major changes in gene expression at the transcriptional level. Furthermore, under hypoxia, global protein synthesis is blocked while internal ribosome entry sites (IRES) allow specific mRNAs to be translated. Here, we report the transcriptome and translatome signatures of (lymph)angiogenic genes in hypoxic HL-1 mouse cardiomyocytes: most genes are induced at the translatome level, including all IRES-containing mRNAs. Our data reveal activation of (lymph)angiogenic factor mRNA IRESs in early hypoxia. We identify vasohibin1 (VASH1) as an IRES trans-acting factor (ITAF) that is able to bind RNA and to activate the FGF1 IRES in hypoxia, but which tends to inhibit several IRESs in normoxia. VASH1 depletion has a wide impact on the translatome of (lymph)angiogenesis genes, suggesting that this protein can regulate translation positively or negatively in early hypoxia. Translational control thus appears as a pivotal process triggering new vessel formation in ischemic heart.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Hipóxia/metabolismo , Sítios Internos de Entrada Ribossomal/fisiologia , Miócitos Cardíacos/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , RNA Mensageiro/metabolismo , Motivos de Ligação ao RNA , Transcriptoma
15.
Mol Cancer Ther ; 15(10): 2465-2474, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27507852

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by intratumoral hypoxia and chemoresistance. The hypoxia-inducible factors HIF1α and HIF2α play a crucial role in ccRCC initiation and progression. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF1α and HIF2α under hypoxia in various cancer cell models. Here, we report that FTY720, an inhibitor of the S1P signaling pathway, inhibits both HIF1α and HIF2α accumulation in several human cancer cell lines. In a ccRCC heterotopic xenograft model, we show that FTY720 transiently decreases HIF1α and HIF2α intratumoral level and modifies tumor vessel architecture within 5 days of treatment, suggesting a vascular normalization. In mice bearing subcutaneous ccRCC tumor, FTY720 and a gemcitabine-based chemotherapy alone display a limited effect, whereas, in combination, there is a significant effect on tumor size without toxicity. Noteworthy, administration of FTY720 for 5 days before chemotherapy is not associated with a more effective tumor control, suggesting a mode of action mainly independent of the vascular remodeling. In conclusion, these findings demonstrate that FTY720 could successfully sensitize ccRCC to chemotherapy and establish this molecule as a potent therapeutic agent for ccRCC treatment, independently of drug scheduling. Mol Cancer Ther; 15(10); 2465-74. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Cloridrato de Fingolimode/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Lisofosfolipídeos , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Consumo de Oxigênio , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Fator A de Crescimento do Endotélio Vascular/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncogene ; 21(42): 6471-9, 2002 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12226750

RESUMO

We previously reported that overexpression of the 24 kDa basic fibroblast factor (or FGF-2) isoform provides protection from the cytotoxic effect of ionizing radiation (IR). DNA double-strand breaks (DSB), the IR-induced lethal lesions, are mainly repaired in human cells by non-homologous end joining system (NHEJ). NHEJ reaction is dependent on the DNA-PK holoenzyme (composed of a regulatory sub-unit, Ku, and a catalytic sub-unit, DNA-PKcs) that assembles at sites of DNA damage. We demonstrated here that the activity of DNA-PK was increased by twofold in two independent radioresistant cell lines, HeLa 3A and CAPAN A3, over expressing the 24 kDa FGF-2. This increase was associated with an overexpression of the DNA-PKcs without modification of Ku expression or activity. This overexpression was due to an up-regulation of the DNA-PKcs gene transcription by the 24 kDa FGF-2 isoform. Finally, HeLa 3A cells exhibited the hallmarks of phenotypic changes associated with the overexpression of an active DNA-PKcs. Indeed, a faster repair rate of DSB and sensitization to IR by wortmannin was observed in these cells. Our results represent the characterization of a new mechanism of control of DNA repair and radioresistance in human tumor cells dependent on the overproduction of the 24 kDa FGF-2 isoform.


Assuntos
Androstadienos/farmacologia , Antígenos Nucleares , Dano ao DNA/efeitos da radiação , DNA Helicases , Reparo do DNA , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células HeLa/efeitos da radiação , Proteínas Serina-Treonina Quinases/metabolismo , Protetores contra Radiação/farmacologia , Androstadienos/metabolismo , Western Blotting , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Desvio de Mobilidade Eletroforética , Células HeLa/metabolismo , Humanos , Autoantígeno Ku , Proteínas Nucleares/metabolismo , Fenótipo , Isoformas de Proteínas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , RNA/metabolismo , Tolerância a Radiação , Fatores de Tempo , Transcrição Gênica , Regulação para Cima , Wortmanina
17.
Oncogene ; 21(39): 5998-6006, 2002 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12203112

RESUMO

Farnesylated Ras oncoprotein induces a cellular resistance to ionizing radiation that can be reversed by farnesyltransferase inhibitors (FTI). We previously demonstrated that, expression of the 24 kDa FGF2 isoform in wild type ras bearing HeLa cells, induced radioresistance which was also reversed by FTI. We tested the hypothesis that wild type Ras or RhoB, which has been proposed as a potential FTI target, could control the FGF-2-induced radioresistance mechanisms. For this, we expressed inducible dominant negative forms of Ras (RasN17) and Rho (RhoBN19) in 24 kDa FGF2 transfected HeLa cells and analysed their survival after irradiation. While no cell survival modification was observed after RasN17 induction, the expression of RhoBN19 induced a radiosensitization of FGF2 radioresistant HeLa cells in the same range as the one observed after a 48 h treatment with the specific FTI, R115777. Moreover, we showed that activated RhoB but not RhoA induced radioresistance in NIH3T3 cells. The radiosensitizer effect of RhoBN19 expression was due to the induction of the radiation induced post-mitotic cell death. Taken together, these data demonstrate that 24 kDa FGF-2-induced radioresistance is controlled by Rho pathways and suggest that RhoB should be a major determinant in cellular resistance to ionizing radiation.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Sobrevivência Celular/fisiologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células HeLa/efeitos da radiação , Metionina/análogos & derivados , Mitose/fisiologia , Tolerância a Radiação/efeitos dos fármacos , Proteínas de Répteis , Proteína rhoB de Ligação ao GTP/fisiologia , Alquil e Aril Transferases/metabolismo , Venenos de Crotalídeos/farmacologia , DNA Complementar/genética , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase , Genes Dominantes , Glicoproteínas/farmacologia , Células HeLa/metabolismo , Humanos , Metionina/farmacologia , Fosfolipases A/antagonistas & inibidores , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/farmacologia , Isoformas de Proteínas/metabolismo , Radiossensibilizantes/farmacologia , Proteínas ras/fisiologia
18.
Oncogene ; 22(55): 8861-9, 2003 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-14654782

RESUMO

We previously demonstrated in vitro that inhibiting the biological pathways of the small GTPase Rho radiosensitizes the human glioma U87 cell line. The aim of this study was to determine if Rho might be involved in the control of in vivo radiosensitivity altogether by controlling cellular radioresistance and by modifying tumor microenvironment. We demonstrate here that the in vivo induction of the dominant negative of Rho, RhoBN19, in U87 xenografts induces a significant decrease of tumor cell survival after irradiation more important than the one we previously observed in vitro. This in vivo increased effect of RhoBN19 expression is due to the improvement of the tumor oxygenation associated with a significant decrease of the vessel density and of the metalloproteinase 2 (MMP2) expression. Moreover, in vitro RhoBN19 expression in U87 cells leads to the inhibition of MMP2 activity. Our results demonstrate for the first time that inhibiting Rho pathways modifies the in vivo radiosensitivity of human glioma cells by controlling intrinsic radioresistance, hypoxia and angiogenesis. These data strongly suggest that Rho should be a major determinant of cellular resistance to ionizing radiation.


Assuntos
Raios gama , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Oxigênio/metabolismo , Transplante Heterólogo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Humanos , Camundongos , Radiografia
19.
Oncotarget ; 6(15): 13803-21, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-25915662

RESUMO

Hypoxia promotes neovascularization, increased tumor growth, and therapeutic resistance. The transcription factor, hypoxia-inducible factor 1α (HIF-1α), has been reported as the master driver of adaptation to hypoxia. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF-1α under hypoxia. Taking advantage of a monoclonal antibody neutralizing extracellular S1P (sphingomab), we report that inhibition of S1P extracellular signaling blocks HIF-1α accumulation and activity in several cancer cell models exposed to hypoxia. In an orthotopic xenograft model of prostate cancer, we show that sphingomab reduces hypoxia and modifies vessel architecture within 5 days of treatment, leading to increased intratumoral blood perfusion. Supporting the notion that a transient vascular normalization of tumor vessels is the mechanism by which sphingomab exerts its effects, we demonstrate that administration of the antibody for 5 days before chemotherapy is more effective at local tumor control and metastatic dissemination than any other treatment scheduling. These findings validate sphingomab as a potential new normalization agent that could contribute to successful sensitization of hypoxic tumors to chemotherapy.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisofosfolipídeos/antagonistas & inibidores , Lisofosfolipídeos/imunologia , Neoplasias da Próstata/tratamento farmacológico , Esfingosina/análogos & derivados , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/metabolismo , Distribuição Aleatória , Transdução de Sinais , Esfingosina/antagonistas & inibidores , Esfingosina/imunologia , Remodelação Vascular/efeitos dos fármacos
20.
Mol Cancer Ther ; 14(2): 586-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527635

RESUMO

Cell migration is a critical step in the progression of prostate cancer to the metastatic state, the lethal form of the disease. The antidiabetic drug metformin has been shown to display antitumoral properties in prostate cancer cell and animal models; however, its role in the formation of metastases remains poorly documented. Here, we show that metformin reduces the formation of metastases to fewer solid organs in an orthotopic metastatic prostate cancer cell model established in nude mice. As predicted, metformin hampers cell motility in PC3 and DU145 prostate cancer cells and triggers a radical reorganization of the cell cytoskeleton. The small GTPase Rac1 is a master regulator of cytoskeleton organization and cell migration. We report that metformin leads to a major inhibition of Rac1 GTPase activity by interfering with some of its multiple upstream signaling pathways, namely P-Rex1 (a Guanine nucleotide exchange factor and activator of Rac1), cAMP, and CXCL12/CXCR4, resulting in decreased migration of prostate cancer cells. Importantly, overexpression of a constitutively active form of Rac1, or P-Rex, as well as the inhibition of the adenylate cyclase, was able to reverse the antimigratory effects of metformin. These results establish a novel mechanism of action for metformin and highlight its potential antimetastatic properties in prostate cancer.


Assuntos
Movimento Celular/efeitos dos fármacos , Metformina/farmacologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA