Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 203: 111891, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34419468

RESUMO

Metal-based adsorbents are limited for hexavalent chromium [Cr(VI)] adsorption from aqueous solutions because of their low adsorption capacities and slow adsorption kinetics. In the present study, decorated zinc oxide (ZnO) nanoparticles (NPs) on graphene oxide (GO) nanoparticles were synthesized via the solvothermal process. The deposition of ZnO NPs on graphene oxide for the nanohybrid (ZnO-GO) improves Cr(VI) mobility in the nanocomposite or nanohybrid, thereby improving the Cr(VI) adsorption kinetics and removal capacity. Surface deposition of ZnO on graphene oxide was characterized through Fourie Transform Infra-red (FTIR), UV-Visible, X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) techniques. These characterizations suggest the formation of ZnO-GO nanocomposite with a specific area of 32.95 m2/g and pore volume of 0.058 cm2/g. Batch adsorption analysis was carried to evaluate the influence of operational parameters, equilibrium isotherm, adsorption kinetics and thermodynamics. The removal efficiency of Cr(VI) increases with increasing time and adsorbent dosage. FTIR, FESEM and BET analysis before and after the adsorption studies suggest the obvious changes in the surface functionalization and morphology of the ZnO-GO nanocomposites. The removal efficiency increases from high-acidic to neutral pH and continues to decrease under alkaline conditions as well. Mathematical modeling validates that the adsorption follows Langmuir isotherm and fits well with the pseudo 2nd order kinetics (Type 5) model, indicating a homogeneous adsorption process. The thermodynamics study reveals that Cr(VI) adsorption on ZnO-GO is spontaneous, endothermic, and entropy-driven. A negative value of Gibb's Free Energy represents the thermodynamic spontaneity and feasibility of the sorption process. To the best of our knowledge, this is the first study of Cr(VI) removal from aqueous solution using this hybrid nanocomposite at near-neutral pH. The synthesized nanocomposites prove to be excellent candidates for Cr(VI) removal from water bodies and natural wastewater systems.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Óxido de Zinco , Adsorção , Cromo/análise , Grafite , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/análise
2.
Chemosphere ; 309(Pt 2): 136683, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36216109

RESUMO

With a growing demand for packaging materials and witnessing many landfills and huge garbage islands floating in the Pacific oceans, the need for an alternative material such as bio-degradable plastics has risen. Cellulose-based materials are already in use in several packaging industries. Nanocellulose, a processed cellulose with a specific nanostructure, have several advantages such as high specific strength, modulus, high surface area and unique optical properties. By varying the crosslinking percentages, the kinetics of degradation can be tailored. In this work, extracted cellulose from sugarcane bagasse was hydrolyzed to obtain nanocellulose, which was used to fabricate packaging films (membrane) with PVA as matrix and nanocellulose. Variations of PVA and nanocellulose loadings, and crosslinking agent ratios. In the fabricated films were investigated for chemical, mechanical, optical, thermal, and topographical properties. Results from the degradation tests under appropriate physically simulated environments have suggested that the crosslinking has enhanced the mechanical properties, extent of degradation was dependent on percentages of crosslinking. A real-world device packaging application was demonstrated by encapsulation of perovskite solar cells with the fabricated nanocellulose film revealed that the lifetime of the devices improved which might be indicative of the film having lower permeability for oxygen and moisture.


Assuntos
Celulose , Saccharum , Celulose/química , Resistência à Tração , Embalagem de Alimentos , Eletrônica , Oxigênio/química , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA