Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38978669

RESUMO

Background: Freezing of gait (FOG) is a debilitating symptom of Parkinson's disease (PD) that is often refractory to medication. Pathological prolonged beta bursts within the subthalamic nucleus (STN) are associated with both worse impairment and freezing behavior in PD, which are improved with deep brain stimulation (DBS). The goal of the current study was to investigate the feasibility, safety, and tolerability of beta burst-driven adaptive DBS (aDBS) for FOG in PD. Methods: Seven individuals with PD were implanted with the investigational Summit™ RC+S DBS system (Medtronic, PLC) with leads placed bilaterally in the STN. A PC-in-the-loop architecture was used to adjust stimulation amplitude in real-time based on the observed beta burst durations in the STN. Participants performed either a harnessed stepping-in-place task or a free walking turning and barrier course, as well as clinical motor assessments and instrumented measures of bradykinesia, OFF stimulation, on aDBS, continuous DBS (cDBS), or random intermittent DBS (iDBS). Results: Beta burst driven aDBS was successfully implemented and deemed safe and tolerable in all seven participants. Gait metrics such as overall percent time freezing and mean peak shank angular velocity improved from OFF to aDBS and showed similar efficacy as cDBS. Similar improvements were also seen for overall clinical motor impairment, including tremor, as well as quantitative metrics of bradykinesia. Conclusion: Beta burst driven adaptive DBS was feasible, safe, and tolerable in individuals with PD with gait impairment and FOG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA