Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34172565

RESUMO

A muscle's structure, or architecture, is indicative of its function and is plastic; changes in input to or use of the muscle alter its architecture. Stroke-induced neural deficits substantially alter both input to and usage of individual muscles. We combined in vivo imaging methods (second-harmonic generation microendoscopy, extended field-of-view ultrasound, and fat-suppression MRI) to quantify functionally meaningful architecture parameters in the biceps brachii of both limbs of individuals with chronic hemiparetic stroke and in age-matched, unimpaired controls. Specifically, serial sarcomere number (SSN) and physiological cross-sectional area (PCSA) were calculated from data collected at three anatomical scales: sarcomere length, fascicle length, and muscle volume. The interlimb differences in SSN and PCSA were significantly larger for stroke participants than for participants without stroke (P = 0.0126 and P = 0.0042, respectively), suggesting we observed muscle adaptations associated with stroke rather than natural interlimb variability. The paretic biceps brachii had ∼8,200 fewer serial sarcomeres and ∼2 cm2 smaller PCSA on average than the contralateral limb (both P < 0.0001). This was manifested by substantially smaller muscle volumes (112 versus 163 cm3), significantly shorter fascicles (11.0 versus 14.0 cm; P < 0.0001), and comparable sarcomere lengths (3.55 versus 3.59 µm; P = 0.6151) between limbs. Most notably, this study provides direct evidence of the loss of serial sarcomeres in human muscle observed in a population with neural impairments that lead to disuse and chronically place the affected muscle at a shortened position. This adaptation is consistent with functional consequences (increased passive resistance to elbow extension) that would amplify already problematic, neurally driven motor impairments.


Assuntos
Músculo Esquelético/patologia , Paresia/complicações , Paresia/patologia , Sarcômeros/patologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Front Physiol ; 12: 817334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211028

RESUMO

The lengths of a muscle's sarcomeres are a primary determinant of its ability to contract and produce force. In addition, sarcomere length is a critical parameter that is required to make meaningful comparisons of both the force-generating and excursion capacities of different muscles. Until recently, in vivo sarcomere length data have been limited to invasive or intraoperative measurement techniques. With the advent of second harmonic generation microendoscopy, minimally invasive measures of sarcomere length can be made for the first time. This imaging technique expands our ability to study muscle adaptation due to changes in stimulus, use, or disease. However, due to past inability to measure sarcomeres outside of surgery or biopsy, little is known about the natural, anatomical variability in sarcomere length in living human subjects. To develop robust experimental protocols that ensure data provide accurate representations of a muscle's sarcomere lengths, we sought to quantify experimental uncertainty associated with in vivo measures of sarcomere lengths. Specifically, we assessed the variability in sarcomere length measured (1) within a single image, along a muscle fiber, (2) across images captured within a single trial, across trials, and across days, as well as (3) across locations in the muscle using second harmonic generation in two upper limb muscles with different muscle architectures, functions, and sizes. Across all of our measures of variability we estimate that the magnitude of the uncertainty for in vivo sarcomere length is on the order of ∼0.25 µm. In the two upper limb muscles studied we found larger variability in sarcomere lengths within a single insertion than across locations. We also developed custom code to make measures of sarcomere length variability across a single fiber and determined that this codes' accuracy is an order of magnitude smaller than our measurement uncertainty due to sarcomere variability. Together, our findings provide guidance for the development of robust experimental design and analysis of in vivo sarcomere lengths in the upper limb.

3.
J Vis Exp ; (166)2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33369599

RESUMO

Muscle fascicle length, which is commonly measured in vivo using traditional ultrasound, is an important parameter defining a muscle's force generating capacity. However, over 90% of all upper limb muscles and 85% of all lower limb muscles have optimal fascicle lengths longer than the field-of-view of common traditional ultrasound (T-US) probes. A newer, less frequently adopted method called extended field-of-view ultrasound (EFOV-US) can enable direct measurement of fascicles longer than the field-of-view of a single T-US image. This method, which automatically fits together a sequence of T-US images from a dynamic scan, has been demonstrated to be valid and reliable for obtaining muscle fascicle lengths in vivo. Despite the numerous skeletal muscles with long fascicles and the validity of the EFOV-US method for making measurements of such fascicles, few published studies have utilized this method. In this study, we demonstrate both how to implement the EFOV-US method to obtain high quality musculoskeletal images and how to quantify fascicle lengths from those images. We expect that this demonstration will encourage the use of the EFOV-US method to increase the pool of muscles, both in healthy and impaired populations, for which we have in vivo muscle fascicle length data.


Assuntos
Processamento de Imagem Assistida por Computador/normas , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/diagnóstico por imagem , Ultrassonografia/normas , Algoritmos , Humanos
4.
J Biomech ; 63: 179-185, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28882331

RESUMO

Static, B-mode ultrasound is the most common method of measuring fascicle length in vivo. However, most forearm muscles have fascicles that are longer than the field-of-view of traditional ultrasound (T-US). As such, little work has been done to quantify in vivo forearm muscle architecture. The extended field-of-view ultrasound (EFOV-US) method, which fits together a sequence of B-mode images taken from a continuous ultrasound scan, facilitates direct measurements of longer, curved fascicles. Here, we test the validity and reliability of the EFOV-US method for obtaining fascicle lengths in the extensor carpi ulnaris (ECU). Fascicle lengths from images of the ECU captured in vivo with EFOV-US were compared to lengths from a well-established method, T-US. Images were collected in a joint posture that shortens the ECU such that entire fascicle lengths were captured within a single T-US image. Resulting measurements were not significantly different (p=0.18); a Bland-Altman test demonstrated their agreement. A novice sonographer implemented EFOV-US in a phantom and in vivo on the ECU. The novice sonographer's measurements from the ultrasound phantom indicate that the combined imaging and analysis method is valid (average error=2.2±1.3mm) and the in vivo fascicle length measurements demonstrate excellent reliability (ICC=0.97). To our knowledge, this is the first study to quantify in vivo fascicle lengths of the ECU using any method. The ability to define a muscle's architecture in vivo using EFOV-US could lead to improvements in diagnosis, model development, surgery guidance, and rehabilitation techniques.


Assuntos
Antebraço/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Adulto , Animais , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Ultrassonografia/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA