Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008674

RESUMO

The selection of experimental conditions leading to a reasonable yield is an important and essential element for the automated development of a synthesis plan and the subsequent synthesis of the target compound. The classical QSPR approach, requiring one-to-one correspondence between chemical structure and a target property, can be used for optimal reaction conditions prediction only on a limited scale when only one condition component (e.g., catalyst or solvent) is considered. However, a particular reaction can proceed under several different conditions. In this paper, we describe the Likelihood Ranking Model representing an artificial neural network that outputs a list of different conditions ranked according to their suitability to a given chemical transformation. Benchmarking calculations demonstrated that our model outperformed some popular approaches to the theoretical assessment of reaction conditions, such as k Nearest Neighbors, and a recurrent artificial neural network performance prediction of condition components (reagents, solvents, catalysts, and temperature). The ability of the Likelihood Ranking model trained on a hydrogenation reactions dataset, (~42,000 reactions) from Reaxys® database, to propose conditions that led to the desired product was validated experimentally on a set of three reactions with rich selectivity issues.


Assuntos
Modelos Químicos , Hidrogenação , Funções Verossimilhança , Estereoisomerismo
2.
J Chem Inf Model ; 59(6): 2516-2521, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31063394

RESUMO

CGRtools is an open-source Python library aimed to handle molecular and reaction information. It is the sole library developed so far which can process condensed graph of reaction (CGR) handling. CGR provides the possibility for advanced operations with reaction information and could be used for reaction descriptor calculation, structure-reactivity modeling, atom-to-atom mapping comparison and correction, reaction center extraction, reaction balancing, and some other related tasks. Unlike other popular libraries, CGRtools is fully written in Python with minor dependencies on other libraries and cross-platform. Reaction, molecule, and CGR objects in CGRtools support native Python methods and are comparable with the help of operations "equal to", "less than", and "bigger than". CGRtools supports common structural formats. CGRtools is distributed via an L-GPL license and available on https://github.com/cimm-kzn/CGRtools .


Assuntos
Quimioinformática/métodos , Bibliotecas de Moléculas Pequenas/química , Software , Fenômenos Químicos , Modelos Químicos
3.
Mol Inform ; 41(4): e2100138, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34726834

RESUMO

In this paper, we compare the most popular Atom-to-Atom Mapping (AAM) tools: ChemAxon,[1] Indigo,[2] RDTool,[3] NameRXN (NextMove),[4] and RXNMapper[5] which implement different AAM algorithms. An open-source RDTool program was optimized, and its modified version ("new RDTool") was considered together with several consensus mapping strategies. The Condensed Graph of Reaction approach was used to calculate chemical distances and develop the "AAM fixer" algorithm for an automatized correction of erroneous mapping. The benchmarking calculations were performed on a Golden dataset containing 1851 manually mapped and curated reactions. The best performing RXNMapper program together with the AMM Fixer was applied to map the USPTO database. The Golden dataset, mapped USPTO and optimized RDTool are available in the GitHub repository https://github.com/Laboratoire-de-Chemoinformatique.


Assuntos
Benchmarking , Fenômenos Bioquímicos , Algoritmos , Bases de Dados Factuais
4.
Mol Inform ; 40(12): e2100119, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34427989

RESUMO

The quality of experimental data for chemical reactions is a critical consideration for any reaction-driven study. However, the curation of reaction data has not been extensively discussed in the literature so far. Here, we suggest a 4 steps protocol that includes the curation of individual structures (reactants and products), chemical transformations, reaction conditions and endpoints. Its implementation in Python3 using CGRTools toolkit has been used to clean three popular reaction databases Reaxys, USPTO and Pistachio. The curated USPTO database is available in the GitHub repository (Laboratoire-de-Chemoinformatique/Reaction_Data_Cleaning).


Assuntos
Curadoria de Dados , Bases de Dados Factuais , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA