RESUMO
KEY MESSAGE: We report that discriminate interaction between the expanded mitochondrial chaperone network and variability in their expression might determine their functional specificities and impart robustness to mitochondrial import processes in plants. Mitochondrial Hsp70 (mtHsp70), the central component of the pre-sequence associated motor (PAM) complex, is crucial for the import of proteins to the mitochondrial matrix. Activity of mtHsp70 is regulated by a heterodimeric complex of two J-domain proteins (JDPs), Pam18 and Pam16. Compared to other eukaryotes, plants harbor multiple copies of these JDPs, which posit that plants have an increasingly complex mtHsp70: JDP network in their mitochondrial matrix. Here, we show that although highly similar in sequence, some of the plant JDPs are functionally different. Protein: protein interaction studies including yeast two-hybrid and Bimolecular Fluorescence Complementation revealed that while all the AtPam18s interacted with AtPam16s, the strengths of these promiscuous interactions are variable. Further, down-regulation of AtPAM16L affected seed germination, even in the presence of its seemingly identical paralog, AtPAM16. Knockdown of AtPAM16L caused reduction in mitochondrial number and deregulation of several mitochondrial genes, suggesting towards a specific role of AtPam16L in maintaining mitochondrial homeostasis, especially under stress conditions. Our findings suggest that variations in the spatio-temporal expression, accompanied by discriminate interactions between the JDPs, might be defining the functional specificity of the mtHsp70 co-chaperone machinery and providing resilience to mitochondrial import processes in plants, especially under stress conditions.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Mutação , Plantas Geneticamente Modificadas , Ligação Proteica , Domínios Proteicos , Transporte Proteico/genéticaRESUMO
The increasing industrialization and urbanization are also triggering environmental pollution, mostly unnoticed, in the case of soil pollution due to uncontrolled contamination by toxic elemental dispersion. The present study focused on this aspect and studied the clean-up of urban soil in a low-cost and eco-friendly way to restrict arsenic (As), lead (Pb) and mercury (Hg) contamination. Four potential ornamental plants, Catharanthus roseus (vinca), Cosmos bipinnatus (cosmos), Gomphrena globose (globosa) and Impatiens balsamina (balsamina) were used along with zero valent iron (ZVI) nanoparticles (Fe NPs) for remediation of the soil spiked with As (70 mg kg-1), Pb (600 mg kg-1) and Hg (15 mg kg-1) in a 60 d pot experiment. All plants were divided into four groups viz. control, spiked, spiked+20 mg kg-1 ZVI NP and spiked+50 mg kg-1 ZVI NP. FTIR and SEM were used for ZVI NP characterization. Soil and plant analyses and elemental assessments were done using ICP-MS, XRF and SEM. Among the four plants, cosmos showed the maximum accumulation of toxic elements (41.24 ± 0.022 mg kg-1 As, 139.15 ± 11.2 mg kg-1 Pb and 15.57 ± 0.27 mg kg-1 Hg) at 60 d. The application of ZVI NP at 20 mg kg-1 dosage was found to further augment plants' potential for metal(loid)s accumulation without negatively hampering their growth. Cosmos were observed to reduce soil As from 81.35 ± 1.34 mg kg-1 to 28.16 ± 1.38 mg kg-1 (65.38%), Pb from 1132.47 ± 4.66 to 516.09 ± 3.15 mg kg-1 (54.42%) and Hg from 17.35 ± 0.88 to 6.65 ± 0.4 mg kg-1 (61.67%) at 60 d in spiked + 20 mg kg-1 ZVI NP treatment. Balsamina was the most sensitive plant and showed the least metal(loid)s accumulation. In conclusion, three of these plants are potent enough to use together for a better and enhanced removal of toxic elements from the contaminated soil with cosmos to be the best amongst these in urban areas.