Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Pathol ; 43(4): 581-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25361751

RESUMO

ß-Secretase 1 (BACE1) represents an attractive target for the treatment of Alzheimer's disease. In the course of development of a novel small molecule BACE1 inhibitor (AMG-8718), retinal thinning was observed in a 1-month toxicity study in the rat. To further understand the lesion, an investigational study was conducted whereby rats were treated daily with AMG-8718 for 1 month followed by a 2-month treatment-free phase. The earliest detectable change in the retina was an increase in autofluorescent granules in the retinal pigment epithelium (RPE) on day 5; however, there were no treatment-related light microscopic changes observed in the neuroretina and no changes observed by fundus autofluorescence or routine ophthalmoscopic examination after 28 days of dosing. Following 2 months of recovery, there was significant retinal thinning attributed to loss of photoreceptor nuclei from the outer nuclear layer. Electroretinographic changes were observed as early as day 14, before any microscopic evidence of photoreceptor loss. BACE1 knockout rats were generated and found to have normal retinal morphology indicating that the retinal toxicity induced by AMG-8718 was likely off-target. These results suggest that AMG-8718 impairs phagolysosomal function in the rat RPE, which leads to photoreceptor dysfunction and ultimately loss of photoreceptors.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Benzopiranos/toxicidade , Inibidores Enzimáticos/toxicidade , Piridinas/toxicidade , Retina/efeitos dos fármacos , Doenças Retinianas/induzido quimicamente , Compostos de Espiro/toxicidade , Animais , Eletrorretinografia , Masculino , Ratos , Ratos Sprague-Dawley , Retina/enzimologia , Retina/patologia , Doenças Retinianas/enzimologia , Tomografia de Coerência Óptica
2.
Cancer Cell ; 5(3): 263-73, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15050918

RESUMO

Breast tissue from healthy women contains variant mammary epithelial cells (vHMEC) exhibiting p16INK4a promoter hypermethylation both in vivo and in vitro. When continuously cultured, vHMEC acquire telomeric dysfunction and produce the types of chromosomal abnormalities seen in premalignant lesions of cancer. We find that late passage vHMEC express elevated prostaglandin cyclo-oxygenase 2 (COX-2), which contributes to increased prostaglandin synthesis, angiogenic activity, and invasive ability. These data demonstrate the existence of human mammary epithelial cells with the potential to acquire multiple genomic alterations and phenotypes associated with malignant cells. Moreover, COX-2 overexpression coincides with focal areas of p16INK4a hypermethylation in vivo, creating ideal candidates as precursors to breast cancer. These putative precursors can be selectively eliminated upon exposure to COX-2 inhibitors in vitro.


Assuntos
Mama/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Epiteliais/metabolismo , Isoenzimas/metabolismo , Lesões Pré-Cancerosas/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Apoptose/fisiologia , Mama/fisiopatologia , Aberrações Cromossômicas , Ciclo-Oxigenase 2 , Dano ao DNA/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Proteínas de Membrana , Metilação , Neovascularização Patológica/metabolismo , Prostaglandinas/metabolismo , Telomerase/metabolismo
3.
Chem Res Toxicol ; 23(6): 1025-33, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20521778

RESUMO

The key to the discovery of new pharmaceuticals is to develop molecules that interact with the intended target and minimize interaction with unintended molecular targets, therefore minimizing toxicity. This is aided by the use of various in vitro selectivity assays that are used to select agents most potent for the desired target. Typically, molecules from similar chemical series, with similar in vitro potencies, are expected to yield comparable in vivo pharmacological and toxicological profiles, predictive of target effects. However, in this study, we investigated the in vivo effects of two analogue compounds that similarly inhibit several receptor tyrosine kinases such as vascular endothelial growth factor receptor 1 (VEGFR/Flt1), vascular endothelial growth factor 2 (VEGFR2/kinase domain receptor/Flk-1), vascular endothelial growth factor receptor 3 (VEGFR3/Flt4), platelet-derived growth factor receptor (PDGFR), and Kit receptors, which bear similar chemical structures, have comparable potencies, but differ markedly in their rodent toxicity profiles. Global gene expression data were used to generate hypotheses regarding the existence of toxicity triggers that would reflect the perturbation of signaling in multiple organs such as the liver, adrenal glands, and the pancreas in response to compound treatment. We concluded that differences in pharmacokinetic properties of the two analogues, such as volume of distribution, half-life, and organ concentrations, resulted in marked differences in the chemical burden on target organs and may have contributed to the vast differences in toxicity profiles observed with the two otherwise similar molecules. We propose including select toxicokinetic parameters such as V(ss), T(1/2), and T(max) as additional criteria that could be used to rank order compounds from the same pharmacological series to possibly minimize organ toxicity. Assessment of toxicokinetics is not an atypical activity on toxicology studies, even in early screening studies; however, these data may not always be used in decision making for selecting or eliminating one compound over another. Finally, we illustrate that in vivo gene expression profiles can serve as a complementary assessor of this activity and simultaneously help provide an assessment of on or off-target biological activity.


Assuntos
Expressão Gênica/efeitos dos fármacos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Genômica , Masculino , Inibidores de Proteínas Quinases/química , Ratos , Ratos Sprague-Dawley , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
4.
Nucleic Acids Res ; 33(22): e187, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16377776

RESUMO

The comparability and reliability of data generated using microarray technology would be enhanced by use of a common set of standards that allow accuracy, reproducibility and dynamic range assessments on multiple formats. We designed and tested a complex biological reagent for performance measurements on three commercial oligonucleotide array formats that differ in probe design and signal measurement methodology. The reagent is a set of two mixtures with different proportions of RNA for each of four rat tissues (brain, liver, kidney and testes). The design provides four known ratio measurements of >200 reference probes, which were chosen for their tissue-selectivity, dynamic range coverage and alignment to the same exemplar transcript sequence across all three platforms. The data generated from testing three biological replicates of the reagent at eight laboratories on three array formats provides a benchmark set for both laboratory and data processing performance assessments. Close agreement with target ratios adjusted for sample complexity was achieved on all platforms and low variance was observed among platforms, replicates and sites. The mixed tissue design produces a reagent with known gene expression changes within a complex sample and can serve as a paradigm for performance standards for microarrays that target other species.


Assuntos
Perfilação da Expressão Gênica/normas , Análise de Sequência com Séries de Oligonucleotídeos/normas , RNA Mensageiro/normas , Animais , Perfilação da Expressão Gênica/métodos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Reprodutibilidade dos Testes , Distribuição Tecidual
5.
Mol Biol Cell ; 13(8): 2585-97, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12181331

RESUMO

Regulation of the hTERT gene encoding the telomerase catalytic subunit plays an important role in human cell senescence, immortalization, and carcinogenesis. By examining the activity of various deleted or mutated hTERT promoter fragments, we show that an E-box element downstream of the transcription initiation site is critical to differential hTERT transcription between the telomerase/hTERT-positive renal cell carcinoma cell line (RCC23) and its telomerase/hTERT-negative counterpart containing a transferred, normal chromosome 3 (RCC23+3). This E-box element mediated repression of hTERT transcription in RCC23+3 but not in RCC23. A copy number-dependent enhancement of the repression suggested active repression, rather than loss of activation, in RCC23+3. Endogenous expression levels of c-Myc or Mad1, which could activate or repress hTERT transcription when overexpressed, did not account for the differential hTERT transcription. Gel mobility shift assays identified the upstream stimulatory factors (USFs) as a major E-box-binding protein complex in both RCC23 and RCC23+3 and, importantly, detected an RCC23+3-specific, E-box-binding factor that was distinct from the USF and Myc/Mad families. The E-box-mediated repression was also active in normal human fibroblasts and epithelial cells and inactive in some, but not all, telomerase/hTERT-positive cancer cells. These findings provide evidence for an endogenous, repressive mechanism that actively functions in telomerase/hTERT-negative normal cells and becomes defective during carcinogenic processes, e.g., by an inactivation of the telomerase repressor gene on chromosome 3.


Assuntos
Elementos E-Box/genética , Regulação da Expressão Gênica , Telomerase/genética , Transcrição Gênica , Proteínas de Ciclo Celular , Cromossomos Humanos Par 3 , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Humanos , Mutagênese Sítio-Dirigida , Proteínas Nucleares , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Células Tumorais Cultivadas
6.
Bone ; 84: 148-159, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26721737

RESUMO

Inhibition of sclerostin with sclerostin antibody (Scl-Ab) has been shown to stimulate bone formation, decrease bone resorption, and increase bone mass in both animals and humans. To obtain insight into the temporal cellular and transcriptional changes in the osteoblast (OB) lineage associated with long-term Scl-Ab treatment, stereological and transcriptional analyses of the OB lineage were performed on lumbar vertebrae from aged ovariectomized rats. Animals were administered Scl-Ab 3 or 50mg/kg/wk or vehicle (VEH) for up to 26weeks (d183), followed by a treatment-free period (TFP). At 50mg/kg/wk, bone volume (BV/total volume [TV]) increased through d183 and declined during the TFP. Bone formation rate (BFR/bone surface [BS]) and total OB number increased through d29, then progressively declined, coincident with a decrease in total osteoprogenitor (OP) numbers from d29 through d183. Analysis of differentially expressed genes (DEGs) from microarray analysis of mRNA isolated from laser capture microdissection samples enriched for OB, lining cells, and osteocytes (OCy) revealed modules of genes that correlated with BFR/BS, BV/TV, and osteoblastic surface (Ob.S)/BS. Expression change of canonical Wnt target genes was similar in all three cell types at d8, including upregulation of Twist1 and Wisp1. At d29, the pattern of Wnt target gene expression changed in the OCy, with Twist1 returning to VEH level, sustained upregulation of Wisp1, and upregulation of several other Wnt targets that continued into the TFP. Predicted activation of pathways recognized to integrate with and regulate canonical Wnt signaling were also activated at d29 in the OCy. The most significantly affected pathways represented transcription factor signaling known to inhibit cell cycle progression (notably p53) and mitogenesis (notably c-Myc). These changes occurred at the time of peak BFR/BS and continued as BFR/BS declined during treatment, then trended toward VEH level in the TFP. Concurrent with this transcriptional switch was a reduction in OP numbers, an effect that would ultimately limit bone formation. This study confirms that the initial transcriptional response in response to Scl-Ab is activation of canonical Wnt signaling and the data demonstrate that there is induction of additional regulatory pathways in OCy with long-term treatment. The interactions between Wnt and p53/c-Myc signaling may be key in limiting OP populations, thus contributing to self-regulation of bone formation with continued Scl-Ab administration.


Assuntos
Anticorpos/farmacologia , Proteínas Morfogenéticas Ósseas/imunologia , Linhagem da Célula/efeitos dos fármacos , Marcadores Genéticos/imunologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Ovariectomia , Transcrição Gênica/efeitos dos fármacos , Animais , Contagem de Células , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteogênese/efeitos dos fármacos , Fenótipo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Tempo
7.
Mol Cancer Res ; 1(4): 300-11, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12612058

RESUMO

Tamoxifen is a widely used breast cancer therapeutic and preventative agent. Although functioning as an estrogen antagonist at the cellular level, transcriptional profiling revealed that at the molecular level, tamoxifen functions largely as an agonist, virtually recapitulating the gene expression profile induced in breast cancer cells by estrogen. Remarkably, tamoxifen induces transcription factors and genes involved in promoting cell cycle progression including fos, myc, myb, cdc25a, cyclins E and A2, and stk15 with kinetics that paralleled that of cells cycling in response to estrogen, even though tamoxifen-treated cells are not transiting through the cell cycle. Induction of cell cycle-associated genes was specific for tamoxifen, and did not occur with raloxifene. However, cyclin D1 was a key estrogen-induced gene not expressed in response to tamoxifen or raloxifene but constitutively expressed in tamoxifen-resistant cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes cdc/fisiologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Neoplasias da Mama/patologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Estrogênios/metabolismo , Estrogênios/farmacologia , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tamoxifeno/metabolismo , Fatores de Tempo
8.
Mol Endocrinol ; 16(6): 1215-29, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12040010

RESUMO

The steroid hormone estrogen can stimulate mitogenesis in hormone-responsive breast cancer epithelial cells. This action is attributed to the transcriptional activity of the ER, a ligand-dependent transcription factor. However, the exact molecular mechanism underlying estrogen-induced proliferation has yet to be completely elucidated. Using custom cDNA microarrays containing many genes implicated in cell cycle progression and DNA replication, we examined the gene expression of a hormone-responsive breast cancer cell line (MCF-7) treated with a mitogenic dose of estrogen in the absence of confounding growth factors found in serum. Gene expression changes were monitored 1, 4, 12, 24, 36, and 48 h after estrogen stimulation so that RNA levels at critical times throughout cell cycle progression could be monitored. Significant changes include the altered transcript levels of genes implicated in transcription, cellular signaling, and cell cycle checkpoints. At time points during which increased numbers of cells were progressing through S phase, a majority of the genes associated with the DNA replication fork were also found to be induced. The coexpression of DNA replication fork genes by estrogen without the support of serum growth factors indicates an important estrogen regulatory component of the molecular mechanism driving estrogen-induced mitogenesis.


Assuntos
Replicação do DNA/efeitos dos fármacos , Estradiol/farmacologia , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Etanol/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Mensageiro/genética , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
9.
Mol Endocrinol ; 17(10): 2070-83, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12893882

RESUMO

The physiological responses of the rodent uterus to acute estrogen (E) dosing can be divided into early and late events. Examples of early responses include increased RNA transcription, hyperemia, and water imbibition 2 and 6 h following E administration respectively, whereas later responses include cycles of DNA synthesis and mitosis of epithelial cells beginning 10 and 16 h after E. The development of estrogen receptor (ER) knockout (ERKO) mice, combined with microarray technology, has allowed us to design a genomic approach to study the acute response of the rodent reproductive tract to E. To determine whether early and late biological responses are correlated with altered regulation of a single set of genes or distinct sets of genes characteristic of early and late responses, uterine RNA was obtained from ovariectomized mice that were treated with vehicle or with estradiol for 2 h (early) or 24 h (late). Samples were also prepared from identically treated mice that lacked either ERalpha (alphaERKO) or ERbeta (betaERKO) to address the relative contributions of the ERs in the uterine responses. Microarray analysis of the relative expression of 8700 mouse cDNAs indicated distinct clusters of genes that were regulated both positively and negatively by E in the early or late phases as well as clusters of genes regulated at both times. Both early and late responses by the betaERKO samples were indistinguishable from those of WT samples, whereas the alphaERKO showed little change in gene expression in response to E, indicating the predominant role for ERalpha in the genomic response. Further studies indicated that the genomic responses in samples from intermediate time points (6 h, 12 h) fall within the early or late clusters, rather than showing unique clusters regulated in the intermediary period. The use of this genomic approach has illustrated how physiological responses are reflected in genomic patterns. Furthermore, the identification of functional gene families that are regulated by E in the uterus combined with the utilization of genetically altered experimental animal models can help to uncover and define novel mechanisms of E action.


Assuntos
Estradiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de Estrogênio/fisiologia , Útero/metabolismo , Animais , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Estradiol/análogos & derivados , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Ovariectomia , RNA Mensageiro/genética , Receptores de Estrogênio/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
10.
Toxicol Sci ; 145(2): 283-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25752796

RESUMO

Off-target effects of drugs on nuclear hormone receptors (NHRs) may result in adverse effects in multiple organs/physiological processes. Reliable assessments of the NHR activities for drug candidates are therefore crucial for drug development. However, the highly permissive structures of NHRs for vastly different ligands make it challenging to predict interactions by examining the chemical structures of the ligands. Here, we report a detailed investigation on the agonistic and antagonistic activities of 615 known drugs or drug candidates against a panel of 6 NHRs: androgen, progesterone, estrogen α/ß, and thyroid hormone α/ß receptors. Our study revealed that 4.7 and 12.4% compounds have agonistic and antagonistic activities, respectively, against this panel of NHRs. Nonetheless, potent, unintended NHR hits are relatively rare among the known drugs, indicating that such interactions are perhaps not tolerated during drug development. However, we uncovered examples of compounds that unintentionally agonize or antagonize NHRs. In addition, a number of compounds showed multi-NHR activities, suggesting that the cross-talk between multiple NHRs co-operate to elicit in vivo effects. These data highlight the merits of counter screening drug candidate against NHRs during drug discovery/development.


Assuntos
Descoberta de Drogas/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Disruptores Endócrinos/toxicidade , Antagonistas de Hormônios/toxicidade , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Disruptores Endócrinos/química , Genes Reporter , Antagonistas de Hormônios/química , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Medição de Risco , Espectrometria de Fluorescência , Transfecção
11.
Environ Health Perspect ; 112(4): 488-94, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15033599

RESUMO

Within the International Life Sciences Institute Committee on Genomics, a working group was formed to focus on the application of microarray technology to preclinical assessments of drug-induced nephrotoxicity. As part of this effort, Sprague-Dawley rats were treated with the nephrotoxicant cisplatin at doses of 0.3-5 mg/kg over a 4- to 144-hr time course. RNA prepared from these animals was run on a variety of microarray formats at multiple sites. A set of 93 differentially expressed genes associated with cisplatin-induced renal injury was identified on the National Institute of Environmental Health Sciences (NIEHS) custom cDNA microarray platform using quadruplicate measurements of pooled animal RNA. The reproducibility of this profile of statistically significant gene changes on other platforms, in pooled and individual animal replicate samples, and in an independent study was investigated. A good correlation in response between platforms was found among the 48 genes in the NIEHS data set that could be matched to probes on the Affymetrix RGU34A array by UniGene identifier or sequence alignment. Similar results were obtained with genes that could be linked between the NIEHS and Incyte or PHASE-1 arrays. The degree of renal damage induced by cisplatin in individual animals was commensurate with the number of differentially expressed genes in this data set. These results suggest that gene profiles linked to specific types of tissue injury or mechanisms of toxicity and identified in well-performed replicated microarray experiments may be extrapolatable across platform technologies, laboratories, and in-life studies.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Perfilação da Expressão Gênica/métodos , Rim/efeitos dos fármacos , Rim/patologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
12.
Environ Health Perspect ; 112(4): 460-4, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15033596

RESUMO

Microarrays allow for the simultaneous measurement of changes in the levels of thousands of messenger RNAs within a single experiment. As such, the potential for the application of transcription profiling to preclinical safety assessment and mechanism-based risk assessment is profound. However, several practical and technical challenges remain. Among these are nomenclature issues, platform-specific data formats, and the lack of uniform analysis methods and tools. Experiments were designed to address biological, technical, and methodological variability, to evaluate different approaches to data analysis, and to understand the application of the technology to other profiling methodologies and to mechanism-based risk assessment. These goals were addressed using experimental information derived from analysis of the biological response to three mechanistically distinct nephrotoxins: cisplatin, gentamicin, and puromycin aminonucleoside. In spite of the technical challenges, the transcription profiling data yielded mechanistically and topographically valuable information. The analyses detailed in the articles from the Nephrotoxicity Working Group of the International Life Sciences Institute Health and Environmental Sciences Institute suggest at least equal sensitivity of microarray technology compared to traditional end points. Additionally, microarray analysis of these prototypical nephrotoxicants provided an opportunity for the development of candidate bridging biomarkers of nephrotoxicity. The potential future extension of these applications for risk assessment is also discussed.


Assuntos
Perfilação da Expressão Gênica , Rim/efeitos dos fármacos , Rim/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Antibacterianos/toxicidade , Antimetabólitos Antineoplásicos/toxicidade , Cisplatino/toxicidade , Relação Dose-Resposta a Droga , Gentamicinas/toxicidade , Masculino , Puromicina/toxicidade , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Medição de Risco
13.
Environ Health Perspect ; 112(4): 465-79, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15033597

RESUMO

This study, designed and conducted as part of the International Life Sciences Institute working group on the Application of Genomics and Proteomics, examined the changes in the expression profile of genes associated with the administration of three different nephrotoxicants--cisplatin, gentamicin, and puromycin--to assess the usefulness of microarrays in the understanding of mechanism(s) of nephrotoxicity. Male Sprague-Dawley rats were treated with daily doses of puromycin (5-20 mg/kg/day for 21 days), gentamicin (2-240 mg/kg/day for 7 days), or a single dose of cisplatin (0.1-5 mg/kg). Groups of rats were sacrificed at various times after administration of these compounds for standard clinical chemistry, urine analysis, and histological evaluation of the kidney. RNA was extracted from the kidney for microarray analysis. Principal component analysis and gene expression-based clustering of compound effects confirmed sample separation based on dose, time, and degree of renal toxicity. In addition, analysis of the profile components revealed some novel changes in the expression of genes that appeared to be associated with injury in specific portions of the nephron and reflected the mechanism of action of these various nephrotoxicants. For example, although puromycin is thought to specifically promote injury of the podocytes in the glomerulus, the changes in gene expression after chronic exposure of this compound suggested a pattern similar to the known proximal tubular nephrotoxicants cisplatin and gentamicin; this prediction was confirmed histologically. We conclude that renal gene expression profiling coupled with analysis of classical end points affords promising opportunities to reveal potential new mechanistic markers of renal toxicity.


Assuntos
Perfilação da Expressão Gênica , Marcadores Genéticos , Rim/efeitos dos fármacos , Rim/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Antibacterianos/toxicidade , Antimetabólitos Antineoplásicos/toxicidade , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Gentamicinas/toxicidade , Masculino , Puromicina/toxicidade , Ratos , Ratos Sprague-Dawley
14.
Toxicol Sci ; 69(2): 306-16, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12377979

RESUMO

Human exposure to arsenic, a ubiquitous and toxic environmental pollutant, is associated with an increased incidence of skin cancer. However, the mechanism(s) associated with AsIII-mediated toxicity and carcinogenesis at low levels of exposure remains elusive. Aberrations in cell proliferation, oxidative damage, and DNA-repair fidelity have been implicated in sodium arsenite (AsIII)-mediated carcinogenicity and toxicity, but these events have been examined in isolation in the majority of biological models of arsenic exposure. We hypothesized that the simultaneous interaction of these effects may be important in arsenic-mediated neoplasia in the skin. To evaluate this, normal human epidermal keratinocytes (NHEK) were exposed to nontoxic doses (0.005-5 micro M) of AsIII and monitored for several physiological endpoints at the times when cells were harvested for gene expression measurements (1-24 h). Two-fluor cDNA microarray analyses indicated that AsIII treatment decreased the expression of genes associated with DNA repair (e.g., p53 and Damage-specific DNA-binding protein 2) and increased the expression of genes indicative of the cellular response to oxidative stress (e.g., Superoxide dismutase 1, NAD(P)H quinone oxidoreductase, and Serine/threonine kinase 25). AsIII also modulated the expression of certain transcripts associated with increased cell proliferation (e.g., Cyclin G1, Protein kinase C delta), oncogenes, and genes associated with cellular transformation (e.g., Gro-1 and V-yes). These observations correlated with measurements of cell proliferation and mitotic measurements as AsIII treatment resulted in a dose-dependent increase in cellular mitoses at 24 h and an increase in cell proliferation at 48 h of exposure. Data in this manuscript demonstrates that AsIII exposure simultaneously modulates DNA repair, cell proliferation, and redox-related gene expression in nontransformed, normal NHEK. It is anticipated that data in this report will serve as a foundation for furthering our knowledge of AsIII-regulated gene expression in skin and other tissues and contribute to a better understanding of arsenic toxicity and carcinogenesis.


Assuntos
Arsenitos/toxicidade , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Acetilcisteína/farmacologia , Northern Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Complementar/biossíntese , DNA Complementar/genética , Sequestradores de Radicais Livres/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Índice Mitótico , Análise de Sequência com Séries de Oligonucleotídeos , Pele/citologia , Pele/efeitos dos fármacos , Timidina/metabolismo , Transcrição Gênica/efeitos dos fármacos
15.
Toxicol Sci ; 69(2): 409-23, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12377990

RESUMO

In humans, exposure to high levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is associated with chronic obstructive pulmonary disease and lung cancer. While several studies have shown that the lung is a target organ for TCDD toxicity, little is known on the specific biological pathways altered by TCDD. Studies have shown that the transcriptional response of TCDD (in vivo and in vitro) is complex, and exhibits cell type and tissue specificity. Thus, the purpose of this study was to look at global and concentration-dependent effects of TCDD on gene expression in human lung cells. Gene expression profiling of both a nontumorigenic (HPL1A) and a malignant, tumorigenic lung cell line (A549) was performed by microarray dual fluorescence hybridizations in cells treated with increasing concentrations of TCDD (0, 0.1, 1, 10 nM) for 24 h. Real time RT-PCR was used to verify alterations in specific genes. Results showed that 68 out of 2091 genes were changed in each cell line, and 15 of those genes were found altered in both cell lines. Common gene responses altered by TCDD were identified and included known xenobiotic metabolizing genes, genes known to alter cell cycle, as well as genes that are involved with cell signaling and that mediate cell motility or communication. Cell line specific differences in gene expression were found that indicate the nonmalignant HPL1A cells are retinoic acid responsive. In addition, TCDD altered specific immunomodulatory genes in the HPL1A cells. These data show that TCDD alters multiple integrated networks of signaling pathways associated with pulmonary disease, particularly that of lung cancer.


Assuntos
Carcinógenos/toxicidade , Carcinoma/patologia , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Mutagênicos/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Algoritmos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , DNA Complementar/metabolismo , Corantes Fluorescentes , Humanos , Sistema Imunitário/efeitos dos fármacos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA/biossíntese , RNA/isolamento & purificação , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
16.
Toxicol Sci ; 67(2): 219-31, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12011481

RESUMO

The application of gene expression profiling technology to examine multiple genes and signaling pathways simultaneously promises a significant advance in understanding toxic mechanisms to ultimately aid in protection of public health. Public and private efforts in the new field of toxicogenomics are focused on populating databases with gene expression profiles of compounds where toxicological and pathological endpoints are well characterized. The validity and utility of a toxicogenomics is dependent on whether gene expression profiles that correspond to different chemicals can be distinguished. The principal hypothesis underlying a toxicogenomic or pharmacogenomic strategy is that chemical-specific patterns of altered gene expression will be revealed using high-density microarray analysis of tissues from exposed organisms. Analyses of these patterns should allow classification of toxicants and provide important mechanistic insights. This report provides a verification of this hypothesis. Patterns of gene expression corresponding to liver tissue derived from chemically exposed rats revealed similarity in gene expression profiles between animals treated with different agents from a common class of compounds, peroxisome proliferators [clofibrate (ethyl-p-chlorophenoxyisobutyrate), Wyeth 14,643 ([4-chloro-6(2,3-xylidino)-2-pyrimidinylthio]acetic acid), and gemfibrozil (5-2[2,5-dimethylphenoxy]2-2-dimethylpentanoic acid)], but a very distinct gene expression profile was produced using a compound from another class, enzyme inducers (phenobarbital).


Assuntos
Perfilação da Expressão Gênica/métodos , Expressão Gênica , Genômica , Proliferadores de Peroxissomos/toxicidade , Fenobarbital/toxicidade , Animais , Clofibrato/química , Clofibrato/toxicidade , Biologia Computacional , DNA Complementar/análise , Genfibrozila/química , Genfibrozila/toxicidade , Perfilação da Expressão Gênica/classificação , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Reconhecimento Automatizado de Padrão , Proliferadores de Peroxissomos/química , Fenobarbital/química , Pirimidinas/química , Pirimidinas/toxicidade , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Relação Estrutura-Atividade
17.
Toxicol Sci ; 67(2): 232-40, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12011482

RESUMO

DNA microarrays, used to measure the gene expression of thousands of genes simultaneously, hold promise for future application in efficient screening of therapeutic drugs. This will be aided by the development and population of a database with gene expression profiles corresponding to biological responses to exposures to known compounds whose toxicological and pathological endpoints are well characterized. Such databases could then be interrogated, using profiles corresponding to biological responses to drugs after developmental or environmental exposures. A positive correlation with an archived profile could lead to some knowledge regarding the potential effects of the tested compound or exposure. We have previously shown that cDNA microarrays can be used to generate chemical-specific gene expression profiles that can be distinguished across and within compound classes, using clustering, simple correlation, or principal component analyses. In this report, we test the hypothesis that knowledge can be gained regarding the nature of blinded samples, using an initial training set comprised of gene expression profiles derived from rat liver exposed to clofibrate, Wyeth 14,643, gemfibrozil, or phenobarbital for 24 h or 2 weeks of exposure. Highly discriminant genes were derived from our database training set using approaches including linear discriminant analysis (LDA) and genetic algorithm/K-nearest neighbors (GA/KNN). Using these genes in the analysis of coded liver RNA samples derived from 24-h, 3-day, or 2-week exposures to phenytoin, diethylhexylpthalate, or hexobarbital led to successful prediction of whether these samples were derived from livers of rats exposed to enzyme inducers or to peroxisome proliferators. This validates our initial hypothesis and lends credibility to the concept that the further development of a gene expression database for chemical effects will greatly enhance the hazard identification processes.


Assuntos
Bases de Dados Factuais , Perfilação da Expressão Gênica/métodos , Genômica , Biossíntese de Proteínas , Xenobióticos/toxicidade , Algoritmos , Animais , Biologia Computacional , DNA Complementar/análise , Dietilexilftalato/toxicidade , Análise Discriminante , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica/classificação , Hexobarbital/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Reconhecimento Automatizado de Padrão , Fenitoína/toxicidade , Valor Preditivo dos Testes , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Método Simples-Cego , Relação Estrutura-Atividade , Xenobióticos/química
18.
Toxicology ; 181-182: 555-63, 2002 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-12505366

RESUMO

Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information.


Assuntos
Farmacogenética/métodos , Xenobióticos/toxicidade , Biologia Computacional , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , National Institutes of Health (U.S.) , Análise de Sequência com Séries de Oligonucleotídeos , Estados Unidos
19.
Mutat Res ; 549(1-2): 169-83, 2004 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15120969

RESUMO

Molecular techniques, such as cDNA microarrays, are being used to aid in the elucidation of the mechanisms of toxicity of a variety of compounds. In this study, we evaluate the molecular effects of furan in the rat liver. Sprague-Dawley rats were exposed to 4 or 40 mg/kg furan for up to 14 days. Furan induced an initial degenerative and necrotic phenotype that was followed by inflammation and fibrosis, consistent with previous observations for this compound. RNA was harvested from each lobe of the liver at several time points to observe whether lobe-specific gene expression effects occurred. Similar gene expression changes were observed in all lobes, however the magnitude of gene expression change was more pronounced in the right lobe. Finally, to help determine the correlation between gene expression changes and liver pathology, we applied traditional microarray visualization tools to the assessment of clinical chemistry and pathology parameters.


Assuntos
Furanos/toxicidade , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Animais , DNA Complementar , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley
20.
Toxicol Sci ; 142(1): 261-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25163676

RESUMO

Mitochondrial perturbation has been recognized as a contributing factor to various drug-induced organ toxicities. To address this issue, we developed a high-throughput flow cytometry-based mitochondrial signaling assay to systematically investigate mitochondrial/cellular parameters known to be directly impacted by mitochondrial dysfunction: mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (ROS), intracellular reduced glutathione (GSH) level, and cell viability. Modulation of these parameters by a training set of compounds, comprised of established mitochondrial poisons and 60 marketed drugs (30 nM to 1mM), was tested in HL-60 cells (a human pro-myelocytic leukemia cell line) cultured in either glucose-supplemented (GSM) or glucose-free (containing galactose/glutamine; GFM) RPMI-1640 media. Post-hoc bio-informatic analyses of IC50 or EC50 values for all parameters tested revealed that MMP depolarization in HL-60 cells cultured in GSM was the most reliable parameter for determining mitochondrial dysfunction in these cells. Disruptors of mitochondrial function depolarized MMP at concentrations lower than those that caused loss of cell viability, especially in cells cultured in GSM; cellular GSH levels correlated more closely to loss of viability in vitro. Some mitochondrial respiratory chain inhibitors increased mitochondrial ROS generation; however, measuring an increase in ROS alone was not sufficient to identify mitochondrial disruptors. Furthermore, hierarchical cluster analysis of all measured parameters provided confirmation that MMP depletion, without loss of cell viability, was the key signature for identifying mitochondrial disruptors. Subsequent classification of compounds based on ratios of IC50s of cell viability:MMP determined that this parameter is the most critical indicator of mitochondrial health in cells and provides a powerful tool to predict whether novel small molecule entities possess this liability.


Assuntos
Glutationa/metabolismo , Substâncias Perigosas/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Células HL-60 , Substâncias Perigosas/química , Ensaios de Triagem em Larga Escala , Humanos , Mitocôndrias/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA