Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Hered ; 104(1): 105-14, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23109719

RESUMO

The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for species' restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental conditions can be expected to influence levels of clonal spread and SGS, particularly in the case of disturbance regimes such as fire. Here, we characterize fine-scale genetic structure and clonal spread in tanoak from drier upland sites and more mesic lowland woodlands. Clonal spread was a significant mode of stand development, but spread was limited on average to about 5-6 m. Gene dispersal was decomposed into clonal and sexual components. The latter varied according to whether it was estimated from all ramets with the clonal component removed or for a single ramet per genet. We used the difference in these 2 estimates of gene dispersal as a measure of the effect of clonality on effective population size in this species. Although upland sites had a greater number of ramets per genet, most of the other indices computed were not significantly different. However, they tended to show greater heterozygote excess and shorter gene dispersal distances than the lowland sites. The average distance among inferred sibships on upland sites was approximately at the scale of maximum clonal range. This was not the case on lowland sites, where sibs were more dispersed. We recommend minimum distances among seed trees to avoid selecting clones and to maximize genetic diversity for restoration.


Assuntos
Conservação dos Recursos Naturais/métodos , Demografia , Ecossistema , Fagaceae/crescimento & desenvolvimento , Fagaceae/genética , Variação Genética , Genética Populacional , California , Primers do DNA/genética , Geografia , Repetições de Microssatélites/genética , Modelos Genéticos , Reação em Cadeia da Polimerase , Densidade Demográfica , Análise de Sequência de DNA
2.
Mol Ecol ; 17(11): 2680-90, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18466233

RESUMO

Regional distribution of genetic diversity in widespread species may be influenced by hybridization with locally restricted, closely related species. Previous studies have shown that Central American East Pacific populations of the wide-ranged Avicennia germinans, the black mangrove, harbour higher genetic diversity than the rest of its range. Genetic diversity in this region might be enhanced by introgression with the locally restricted Avicennia bicolor. We tested the hypotheses of ancient hybridization using phylogenetic analysis of the internal transcribed spacer region (ITS) of the nuclear ribosomal DNA and intergenic chloroplast DNA; we also tested for current hybridization by population level analysis of nuclear microsatellites. Our results unveiled ancient ITS introgression between a northern Pacific Central American A. germinans lineage and A. bicolor. However, microsatellite data revealed contemporary isolation between the two species. Polymorphic ITS sequences from Costa Rica and Panama are consistent with a zone of admixture between the introgressant ITS A. germinans lineage and a southern Central American lineage of A. germinans. Interspecific introgression influenced lineage diversity and divergence at the nuclear ribosomal DNA; intraspecific population differentiation and secondary contact are more likely to have enhanced regional genetic diversity in Pacific Central American populations of the widespread A. germinans.


Assuntos
Avicennia/genética , Variação Genética , Sequência de Bases , Costa Rica , DNA de Cloroplastos/genética , DNA Intergênico/genética , DNA Ribossômico/genética , México , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA
3.
Evolution ; 58(2): 261-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15068344

RESUMO

The four western North American red oak species (Quercus wislizeni, Q. parvula, Q. agrifolia, and Q. kelloggii) are known to produce hybrid products in all interspecific combinations. However, it is unknown whether hybrids are transitory resulting from interspecific gene flow or whether they are maintained through extrinsic selection. Here, we examine cryptic hybrid structure in Q. wislizeni through a broad region including contact and isolation from three other western North American red oaks using amplified fragment length polymorphism molecular markers. All four species were simultaneously detected in the genetic background of individuals morphologically assigned to Q. wislizeni, although the contribution of Q. kelloggii was minor. In some cases, introgression was detected well outside the region of sympatry with one of the parental species. Molecular structure at the individual level indicated this was due to long-distance pollen dispersal and not to local extinction of parental species. Species admixture proportions were correlated with climatic variables and greater proportions of Q. agrifolia and Q. parvula were present in the genetic background of Q. wislizeni in sites with cooler and more humid summers, corresponding with habitat preferences of the parental species. Partial Mantel tests indicated that climate was more important than distance from pollen source in this association. Despite high levels of introgression, species integrity was maintained in some populations in close proximity to the other species, providing further support to environmental selection in determining population genetic structure. Thus, the contribution of species mixtures to population genetic structure varies across the landscape according to availability of pollen, but more importantly to varying environmental selection pressures that produce a complex pattern of hybrid and pure gene pools.


Assuntos
Demografia , Genética Populacional , Hibridização Genética , Quercus/fisiologia , Seleção Genética , California , Clima , Geografia , Pólen/fisiologia , Polimorfismo de Fragmento de Restrição
4.
Am J Bot ; 96(12): 2224-33, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21622338

RESUMO

Knowledge of population genetic structure of tanoak (Lithocarpus densiflorus) is of interest to pathologists seeking natural variation in resistance to sudden oak death disease, to resource managers who need indications of conservation priorities in this species now threatened by the introduced pathogen (Phytophthora ramorum), and to biologists with interests in demographic processes that have shaped plant populations. We investigated population genetic structure using nuclear and chloroplast DNA (cpDNA) and inferred the effects of past population demographic processes and contemporary gene flow. Our cpDNA results revealed a strong pattern of differentiation of four regional groups (coastal California, southern Oregon, Klamath mountains, and Sierra Nevada). The chloroplast haplotype phylogeny suggests relatively deep divergence of Sierra Nevada and Klamath populations from those of coastal California and southern Oregon. A widespread coastal California haplotype may have resulted from multiple refugial sites during the Last Glacial Maximum or from rapid recolonization from few refugia. Analysis of nuclear microsatellites suggests two major groups: (1) central coastal California and (2) Sierra Nevada/Klamath/southern Oregon and an area of admixture in north coastal California. The low level of nuclear differentiation is likely to be due to pollen gene flow among populations during postglacial range expansion.

5.
New Phytol ; 179(2): 505-514, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19086294

RESUMO

Variations in synchronicity between colonization rate by the pathogen and host phenology may account for unexplained spatial distribution of canker disease. The hypothesis that synchronous pathogenicity and host development are necessary for incidence of sudden oak death disease was tested by correlating seasonal variations in host cambial phenology and response to inoculation with Phytophthora ramorum. Response to infection was estimated by inoculating branch cuttings from coast live oak (Quercus agrifolia) trees at nine dates through a full annual cycle in 2003-2004. Host phenology was estimated from measurements of bud burst and cambial activity in spring 2006. Lesions were largest in the spring soon after the cambium resumed activity. A moderate genetic component to lesion size was detected. Variation among trees in date of largest lesions correlated with variation in timing of bud burst and cambial phenology. The data support the hypothesis that active host cambial tissue is a necessary requisite for successful infection with the pathogen that causes sudden oak death canker disease. Genetic variation in host phenology will buffer coast live oak against epidemics of this disease.


Assuntos
Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Quercus/microbiologia , Estações do Ano , Fatores de Tempo
6.
Mol Ecol ; 16(4): 723-36, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17284207

RESUMO

European black pine (Pinus nigra Arn.) is a widely distributed Mediterranean conifer. To test the hypothesis that fragmented populations in western Europe survived in situ during the last glacial rather than having been re-colonized in the postglacial period, genetic variation was assessed using a suite of 10 chloroplast DNA microsatellites. Among 311 individuals analysed, 235 haplotypes were detected revealing high levels of chloroplast haplotype diversity in most populations. Bayesian analysis using a model of linked loci, with no prior assumption of population structure, assigned individuals to 10 clusters that corresponded well with the six predefined sampling regions, while an analysis carried out at the population level and assuming unlinked loci, recovered the original six sampling regions. This regional structure was supported by a biogeographical analysis that detected five barriers, with the two most significant separating Alps from Corsica and southern Italy, and southern Spain from the Pyrenees. No signals of demographic expansion were detected, and comparisons of R(ST) with pR(ST) suggested that a stepwise mutational model was important in regional differentiation, but not in population-within-region differentiation. These tests support long-term persistence of the species within the six regions. The temporal depth estimate, assuming a high mutation rate in coalescent modelling, placed the deepest split between the Alps and the other regions at about 150 000 years ago, and the most recent split of Pyrenees from southern France at about 30 000 years ago. Taken together, the data suggest that chloroplast DNA is structured in black pine and disjunct populations in western Europe are likely to have been present during the Last Glacial Maximum.


Assuntos
Clima , Demografia , Variação Genética , Genética Populacional , Pinus/genética , Teorema de Bayes , Análise por Conglomerados , DNA de Cloroplastos/genética , Europa (Continente) , Evolução Molecular , Geografia , Haplótipos/genética , Repetições de Microssatélites/genética , Modelos Genéticos , Mutação/genética , Dinâmica Populacional
7.
New Phytol ; 165(1): 203-14, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15720634

RESUMO

California coastal woodlands are suffering severe disease and mortality as a result of infection from Phytophthora ramorum. Quercus agrifolia is one of the major woodland species at risk. This study investigated within- and among-population variation in host susceptibility to inoculation with P. ramorum and compared this with population genetic structure using molecular markers. Susceptibility was assessed using a branch-cutting inoculation test. Trees were selected from seven natural populations in California. Amplified fragment length polymorphism molecular markers were analysed for all trees used in the trials. Lesion sizes varied quantitatively among individuals within populations, with up to an eightfold difference. There was little support for population differences in susceptibility. Molecular structure also showed a strong within-population, and weaker among-population, pattern of variation. Our data suggest that susceptibility of Q. agrifolia to P. ramorum is variable and is under the control of several gene loci. This variation exists within populations, so that less susceptible local genotypes may provide the gene pool for regeneration of woodlands where mortality is high.


Assuntos
Variação Genética , Phytophthora/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Quercus/genética , Quercus/parasitologia , California , Marcadores Genéticos , Predisposição Genética para Doença , Filogenia , Polimorfismo Genético , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA