Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38986619

RESUMO

Posterior fossa group A (PFA) ependymoma is a lethal brain cancer diagnosed in infants and young children. The lack of driver events in the PFA linear genome led us to search its 3D genome for characteristic features. Here, we reconstructed 3D genomes from diverse childhood tumor types and uncovered a global topology in PFA that is highly reminiscent of stem and progenitor cells in a variety of human tissues. A remarkable feature exclusively present in PFA are type B ultra long-range interactions in PFAs (TULIPs), regions separated by great distances along the linear genome that interact with each other in the 3D nuclear space with surprising strength. TULIPs occur in all PFA samples and recur at predictable genomic coordinates, and their formation is induced by expression of EZHIP. The universality of TULIPs across PFA samples suggests a conservation of molecular principles that could be exploited therapeutically.

2.
Cell ; 153(5): 1064-79, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706743

RESUMO

Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress. PAPERCLIP:


Assuntos
Caenorhabditis elegans/metabolismo , Quinase do Fator 2 de Elongação/metabolismo , Neoplasias/fisiopatologia , Elongação Traducional da Cadeia Peptídica , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Neoplasias Encefálicas/fisiopatologia , Caenorhabditis elegans/genética , Sobrevivência Celular , Transformação Celular Neoplásica , Quinase do Fator 2 de Elongação/genética , Privação de Alimentos , Glioblastoma/fisiopatologia , Células HeLa , Humanos , Camundongos , Camundongos Nus , Células NIH 3T3 , Transplante de Neoplasias , Fator 2 de Elongação de Peptídeos/metabolismo , Transplante Heterólogo
3.
Mol Cell ; 65(6): 999-1013.e7, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28306514

RESUMO

PARK2 is a gene implicated in disease states with opposing responses in cell fate determination, yet its contribution in pro-survival signaling is largely unknown. Here we show that PARK2 is altered in over a third of all human cancers, and its depletion results in enhanced phosphatidylinositol 3-kinase/Akt (PI3K/Akt) activation and increased vulnerability to PI3K/Akt/mTOR inhibitors. PARK2 depletion contributes to AMPK-mediated activation of endothelial nitric oxide synthase (eNOS), enhanced levels of reactive oxygen species, and a concomitant increase in oxidized nitric oxide levels, thereby promoting the inhibition of PTEN by S-nitrosylation and ubiquitination. Notably, AMPK activation alone is sufficient to induce PTEN S-nitrosylation in the absence of PARK2 depletion. Park2 loss and Pten loss also display striking cooperativity to promote tumorigenesis in vivo. Together, our findings reveal an important missing mechanism that might account for PTEN suppression in PARK2-deficient tumors, and they highlight the importance of PTEN S-nitrosylation in supporting cell survival and proliferation under conditions of energy deprivation.


Assuntos
Metabolismo Energético , Neoplasias/enzimologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antineoplásicos/farmacologia , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
Adv Exp Med Biol ; 1416: 159-173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432626

RESUMO

While the majority of meningiomas encountered clinically are sporadic, there is a rare subset that arises due to early life or childhood irradiation. Sources of this radiation exposure may be due to treatment of other cancers such as acute childhood leukemia, other central nervous system tumors such as medulloblastoma, the treatment of tinea capitis (rarely and historically), or environmental exposures, as seen in some of the Hiroshima and Nagasaki atomic bomb survivors. Regardless of their etiology, however, radiation-induced meningiomas (RIMs) tend to be highly biologically aggressive irrespective of WHO grade and are usually refractory to the conventional treatment modalities of surgery and/or radiotherapy. In this chapter, we will discuss these RIMs in their historical context, their clinical presentation, their genomic features and ongoing efforts to better understand these tumors from a biological standpoint in order to develop better, more efficacious therapies for these patients.


Assuntos
Neoplasias Cerebelares , Leucemia , Meduloblastoma , Meningioma , Neoplasias Induzidas por Radiação , Humanos , Criança , Meningioma/etiologia , Neoplasias Induzidas por Radiação/epidemiologia
5.
Acta Neuropathol ; 141(1): 101-116, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33025139

RESUMO

Schwannomatosis (SWNTS) is a genetic cancer predisposition syndrome that manifests as multiple and often painful neuronal tumors called schwannomas (SWNs). While germline mutations in SMARCB1 or LZTR1, plus somatic mutations in NF2 and loss of heterozygosity in chromosome 22q have been identified in a subset of patients, little is known about the epigenomic and genomic alterations that drive SWNTS-related SWNs (SWNTS-SWNs) in a majority of the cases. We performed multiplatform genomic analysis and established the molecular signature of SWNTS-SWNs. We show that SWNTS-SWNs harbor distinct genomic features relative to the histologically identical non-syndromic sporadic SWNs (NS-SWNS). We demonstrate the existence of four distinct DNA methylation subgroups of SWNTS-SWNs that are associated with specific transcriptional programs and tumor location. We show several novel recurrent non-22q deletions and structural rearrangements. We detected the SH3PXD2A-HTRA1 gene fusion in SWNTS-SWNs, with predominance in LZTR1-mutant tumors. In addition, we identified specific genetic, epigenetic, and actionable transcriptional programs associated with painful SWNTS-SWNs including PIGF, VEGF, MEK, and MTOR pathways, which may be harnessed for management of this syndrome.


Assuntos
Epigênese Genética , Genômica , Neoplasias de Bainha Neural/genética , Neurilemoma/genética , Neurofibromatoses/genética , Neoplasias Cutâneas/genética , Transcriptoma , Proteínas Adaptadoras de Transporte Vesicular/genética , Estudos de Coortes , Metilação de DNA , Fusão Gênica , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Neurofibromina 2/genética , Fatores de Transcrição/genética
6.
Metabolomics ; 17(7): 64, 2021 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-34175981

RESUMO

INTRODUCTION: Acute lymphoblastic leukemia (ALL) is among the most common cancers in children. With improvements in combination chemotherapy regimens, the overall survival has increased to over 90%. However, the current challenge is to mitigate adverse events resulting from the complex therapy. Several chemotherapies intercept cancer metabolism, but little is known about their collective role in altering host metabolism. OBJECTIVES: We profiled the metabolomic changes in plasma of ALL patients initial- and post- induction therapy. METHODS: We exploited a biorepository of non-fasted plasma samples derived from the Dana Farber Cancer Institute ALL Consortium; these samples were obtained from 50 ALL patients initial- and post-induction therapy. Plasma metabolites and complex lipids were analyzed by high resolution tandem mass spectrometry and differential mobility tandem mass spectrometry. Data were analyzed using a covariate-adjusted regression model with multiplicity adjustment. Pathway enrichment analysis and co-expression network analysis were performed to identify unique clusters of molecules. RESULTS: More than 1200 metabolites and complex lipids were identified in the total of global metabolomics and lipidomics platforms. Over 20% of those molecules were significantly altered. In the pathway enrichment analysis, lipids, particularly phosphatidylethanolamines (PEs), were identified. Network analysis indicated that the bioactive fatty acids, docosahexaenoic acid (DHA)-containing (22:6) triacylglycerols (TAGs), were decreased in the post-induction therapy. CONCLUSION: Metabolomic profiling in ALL patients revealed a large number of alterations following induction chemotherapy. In particular, lipid metabolism was substantially altered. The changes in metabolites and complex lipids following induction therapy could provide insight into the adverse events experienced by ALL patients.


Assuntos
Quimioterapia de Indução , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Lipídeos , Metabolômica , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Espectrometria de Massas em Tandem
7.
Acta Neuropathol ; 136(2): 315-326, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29428974

RESUMO

Multifocal synchronous or metachronous atypical teratoid rhabdoid tumors (ATRTs) and non-central nervous system malignant rhabdoid tumors (extra-CNS MRTs) are rare cancers. We reviewed the clinical and radiologic characteristics of affected patients seen at our institution. Genotyping and analysis of copy number abnormalities (CNAs) in SMARCB1 were performed in germline and tumor samples. Tumor samples underwent genome-wide DNA methylation and CNA analysis. The median age at diagnosis of 21 patients was 0.6 years. Two-thirds of ATRTs and extra-CNS MRTs were diagnosed synchronously. Although kidney tumors predominated, including two patients with bilateral involvement, at least 30% of cases lacked renal involvement. Histopathologic review confirmed MRTs in all cases and INI1 expression loss in all tumors tested. Fourteen (78%) of 18 patients tested had heterozygous germline SMARCB1 abnormalities. At least one allelic SMARCB1 abnormality was confirmed in 81 and 88% of ATRTs and extra-CNS MRTs, respectively. Unsupervised hierarchical clustering analysis of DNA methylation in 27 tumors and comparison with a reference group of 150 ATRTs classified the CNS tumors (n = 14) as sonic hedgehog (64%), tyrosinase (21%), and MYC (14%). The MYC subgroup accounted for 85% of 13 extra-CNS MRTs. Of 16 paired ATRTs and extra-CNS MRTs, the tumors in seven of eight patients showed a different pattern of genome-wide DNA methylation and/or CNAs suggestive of non-clonal origin. CNS and extra-CNS tumors had an identical SMARCB1 amplification (n = 1) or very similar DNA methylation pattern (n = 1) suggestive of clonal origin. All patients died of tumor progression. The clinical and molecular characteristics of multifocal ATRTs and extra-CNS MRTs are heterogeneous with most patients harboring a cancer predisposition. Although independent tumor origin was confirmed in most cases, metastatic spread was also documented. The recognition of their distinct molecular characteristics is critical in selecting new biologic therapies against these deadly cancers.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Mutação/genética , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase Multiplex , Estudos Retrospectivos , Tumor Rabdoide/diagnóstico por imagem , Tomógrafos Computadorizados
8.
Am J Pathol ; 186(6): 1674-87, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27106762

RESUMO

Stress granules are small RNA-protein granules that modify the translational landscape during cellular stress to promote survival. The RhoGTPase RhoA is implicated in the formation of RNA stress granules. Our data demonstrate that the cytokinetic proteins epithelial cell transforming 2 and Aurora kinase B (AurkB) are localized to stress granules in human astrocytoma cells. AurkB and its downstream target histone-3 are phosphorylated during arsenite-induced stress. Chemical (AZD1152-HQPA) and siRNA inhibition of AurkB results in fewer and smaller stress granules when analyzed using high-throughput fluorescent-based cellomics assays. RNA immunoprecipitation with the known stress granule aggregates TIAR and G3BP1 was performed on astrocytoma cells, and subsequent analysis revealed that astrocytoma stress granules harbor unique mRNAs for various cellular pathways, including cellular migration, metabolism, translation, and transcriptional regulation. Human astrocytoma cell stress granules contain mRNAs that are known to be involved in glioma signaling and the mammalian target of rapamycin pathway. These data provide evidence that RNA stress granules are a novel form of epigenetic regulation in astrocytoma cells, which may be targetable by chemical inhibitors and enhance astrocytoma susceptibility to conventional therapy, such as radiation and chemotherapy.


Assuntos
Astrocitoma/patologia , Aurora Quinase B/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , Estresse Fisiológico/fisiologia , Astrocitoma/metabolismo , Biomarcadores/análise , Proteínas de Transporte/biossíntese , Linhagem Celular Tumoral , DNA Helicases , Epigênese Genética , Humanos , Imuno-Histoquímica , Imunoprecipitação , Estimativa de Kaplan-Meier , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/biossíntese , Transfecção
10.
Proc Natl Acad Sci U S A ; 110(35): 14378-83, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23942126

RESUMO

Gliomas represent the most common type of brain tumor, but show considerable variability in histologic appearance and clinical outcome. The phenotypic differences between types and grades of gliomas have not been explained solely on the grounds of differing oncogenic stimuli. Several studies have demonstrated that some phenotypic differences may be attributed to regional differences in the neural stem cells from which tumors arise. We hypothesized that temporal differences may also play a role, with tumor phenotypic variability reflecting intrinsic differences in neural stem cells at distinct developmental stages. To determine how the tumorigenic potential of lineally related stem cells changes over time, we used a conditional transgenic system that integrates Cre-Lox-mediated and Tet-regulated expression to drive K-ras(G12D) expression in neuro-glial progenitor populations at different developmental time points. Using this model, we demonstrate that K-ras(G12D)-induced transformation is dependent on the developmental stage at which it is introduced. Diffuse malignant brain tumors develop during early embryogenesis but not when K-ras(G12D) expression is induced during late embryogenesis or early postnatal life. We show that differential expression of cell-cycle regulators during development may be responsible for this differing susceptibility to malignant transformation and that loss of p53 can overcome the transformation resistance seen at later developmental stages. These results highlight the interplay between genetic alterations and the molecular changes that accompany specific developmental stages; early progenitors may lack the regulatory mechanisms present at later, more lineage-restrictive, developmental time points, making them more susceptible to transformation.


Assuntos
Diferenciação Celular , Transformação Celular Neoplásica , Células-Tronco Neurais/citologia , Neuroglia/citologia , Animais , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Primers do DNA , Células-Tronco Embrionárias/citologia , Genes ras , Camundongos , Camundongos Transgênicos , Oncogenes , Reação em Cadeia da Polimerase
11.
Neuropathol Appl Neurobiol ; 41(2): e16-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24989599

RESUMO

AIMS: Meningiomas are one of the most common brain tumours in adults. Invasive and malignant meningiomas present a significant therapeutic challenge due to high recurrence rates and invasion into surrounding bone, brain, neural and soft tissues. Understanding the molecular mechanism of invasion could help in designing novel therapeutic approaches in order to prevent the need for repeat surgery, decrease morbidity and improve patient survival. The aim of this study was to identify the key factors and underlying mechanisms which govern invasive properties of meningiomas. METHODS: Formalin-fixed paraffin-embedded (FFPE) as well as frozen tumour tissues from bone-invasive, non-invasive and malignant meningiomas were used for RNA microarray, quantitative real-time PCR or Western blot analyses. Malignant meningioma cell lines (F5) were subject to MMP16 downregulation or overexpression and used for in vitro and in vivo functional assays. Subdural xenograft meningioma tumours were generated to study the invasion of tumour cells into brain parenchyma using cell lines with altered MMP16 expression. RESULTS: We establish that the expression level of MMP16 was significantly elevated in both bone-invasive and brain invasive meningiomas. Gain- and loss-of-function experiments indicated a role for MMP16 in meningioma cell movement, invasion and tumour cell growth. Furthermore, MMP16 was shown to positively regulate MMP2, suggesting this mechanism may modulate meningioma invasion in invasive meningiomas. CONCLUSIONS: Overall, the results support a role for MMP16 in promoting invasive properties of the meningioma tumours. Further studies to explore the potential value for clinical use of matrix metalloproteinases inhibitors are warranted.


Assuntos
Metaloproteinase 16 da Matriz/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/patologia , Adulto , Animais , Western Blotting , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/fisiologia , Xenoenxertos , Humanos , Metaloproteinase 2 da Matriz/biossíntese , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
12.
Acta Neuropathol ; 128(6): 863-77, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25120190

RESUMO

Pediatric ependymomas are highly recurrent tumors resistant to conventional chemotherapy. Telomerase, a ribonucleoprotein critical in permitting limitless replication, has been found to be critically important for the maintenance of tumor-initiating cells (TICs). These TICs are chemoresistant, repopulate the tumor from which they are identified, and are drivers of recurrence in numerous cancers. In this study, telomerase enzymatic activity was directly measured and inhibited to assess the therapeutic potential of targeting telomerase. Telomerase repeat amplification protocol (TRAP) (n = 36) and C-circle assay/telomere FISH/ATRX staining (n = 76) were performed on primary ependymomas to determine the prevalence and prognostic potential of telomerase activity or alternative lengthening of telomeres (ALT) as telomere maintenance mechanisms, respectively. Imetelstat, a phase 2 telomerase inhibitor, was used to elucidate the effect of telomerase inhibition on proliferation and tumorigenicity in established cell lines (BXD-1425EPN, R254), a primary TIC line (E520) and xenograft models of pediatric ependymoma. Over 60 % of pediatric ependymomas were found to rely on telomerase activity to maintain telomeres, while no ependymomas showed evidence of ALT. Children with telomerase-active tumors had reduced 5-year progression-free survival (29 ± 11 vs 64 ± 18 %; p = 0.03) and overall survival (58 ± 12 vs 83 ± 15 %; p = 0.05) rates compared to those with tumors lacking telomerase activity. Imetelstat inhibited proliferation and self-renewal by shortening telomeres and inducing senescence in vitro. In vivo, Imetelstat significantly reduced subcutaneous xenograft growth by 40 % (p = 0.03) and completely abolished the tumorigenicity of pediatric ependymoma TICs in an orthotopic xenograft model. Telomerase inhibition represents a promising therapeutic approach for telomerase-active pediatric ependymomas found to characterize high-risk ependymomas.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Ependimoma/tratamento farmacológico , Indóis/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Niacinamida/análogos & derivados , Telomerase/antagonistas & inibidores , Animais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/enzimologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Pré-Escolar , Estudos de Coortes , Intervalo Livre de Doença , Ependimoma/diagnóstico , Ependimoma/enzimologia , Feminino , Humanos , Camundongos , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/enzimologia , Transplante de Neoplasias , Células-Tronco Neoplásicas/enzimologia , Niacinamida/farmacologia , Oligonucleotídeos , Telomerase/metabolismo , Telômero/efeitos dos fármacos , Telômero/metabolismo
13.
Exp Cell Res ; 319(4): 517-28, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23201135

RESUMO

Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite current advances in therapy consisting of surgery followed by chemotherapy and radiation, the overall survival rate still remains poor. Therapeutic failures are partly attributable to the highly infiltrative nature of tumor adjacent to normal brain parenchyma. Recently, evidence is mounting to suggest that actin cytoskeleton dynamics are critical components of the cell invasion process. Drebrin is an actin-binding protein involved in the regulation of actin filament organization, and plays a significant role in cell motility; however, the role of drebrin in glioma cell invasiveness has not yet been fully elucidated. Therefore, this study was aimed to clarify the role of drebrin in glioma cell morphology and cell motility. Here we show that drebrin is expressed in glioma cell lines and in operative specimens of GBM. We demonstrate that stable overexpression of drebrin in U87 cells leads to alterations in cell morphology, and induces increased invasiveness in vitro while knockdown of drebrin in U87 cells by small interfering RNA (siRNA) decreases invasion and migration. In addition, we show that depletion of drebrin by siRNA alters glioma cell morphology in A172 GBM cell line. Our results suggest that drebrin contributes to the maintenance of cell shape, and may play an important role in glioma cell motility.


Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular/genética , Glioma/patologia , Neuropeptídeos/fisiologia , Neoplasias Encefálicas/genética , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Forma Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Humanos , Invasividade Neoplásica , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Análise Serial de Tecidos , Transfecção
14.
Neurosurg Focus ; 37(6): E13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25434382

RESUMO

Diffuse gliomas and secondary glioblastomas (GBMs) that develop from low-grade gliomas are a common and incurable class of brain tumor. Mutations in the metabolic enzyme glioblastomas (IDH1) represent a distinguishing feature of low-grade gliomas and secondary GBMs. IDH1 mutations are one of the most common and earliest detectable genetic alterations in low-grade diffuse gliomas, and evidence supports this mutation as a driver of gliomagenesis. Here, the authors highlight the biological consequences of IDH1 mutations in gliomas, the clinical and therapeutic/diagnostic implications, and the molecular subtypes of these tumors. They also explore, in brief, the non-IDH1-mutated gliomas, including primary GBMs, and the molecular subtypes and drivers of these tumors. A fundamental understanding of the diversity of GBMs and lower-grade gliomas will ultimately allow for more effective treatments and predictors of survival.


Assuntos
Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , Glioma/enzimologia , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioblastoma/genética , Glioblastoma/terapia , Glioma/genética , Glioma/terapia , Humanos , Isocitrato Desidrogenase/genética
15.
Epilepsia Open ; 9(1): 409-416, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798921

RESUMO

Low-grade epilepsy-associated tumors (LEATs) are a common cause of drug-resistant epilepsy in children. Herein, we demonstrate the feasibility of using tumor tissue derived from stereoelectroencephalography (sEEG) electrodes upon removal to molecularly characterize tumors and aid in diagnosis. An 18-year-old male with focal epilepsy and MRI suggestive of a dysembryoplastic neuroepithelial tumor (DNET) in the left posterior temporal lobe underwent implantation of seven peri-tumoral sEEG electrodes for peri-operative language mapping and demarcation of the peri-tumoral ictal zone prior to DNET resection. Using electrodes that passed through tumor tissue, we show successful isolation of tumor DNA and subsequent analysis using standard methods for tumor classification by DNA, including Glioseq targeted sequencing and DNA methylation array analysis. This study provides preliminary evidence for the feasibility of molecular diagnosis of LEATs or other lesions using a minimally invasive method with microscopic tissue volumes. The implications of sEEG electrodes in tumor characterization are broad but would aid in diagnosis and subsequent targeted therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Epilepsia , Masculino , Humanos , Criança , Adolescente , Eletroencefalografia/métodos , Neoplasias Encefálicas/cirurgia , Eletrodos Implantados , DNA
16.
Nat Cancer ; 5(7): 1024-1044, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38519786

RESUMO

Cancers commonly reprogram translation and metabolism, but little is known about how these two features coordinate in cancer stem cells. Here we show that glioblastoma stem cells (GSCs) display elevated protein translation. To dissect underlying mechanisms, we performed a CRISPR screen and identified YRDC as the top essential transfer RNA (tRNA) modification enzyme in GSCs. YRDC catalyzes the formation of N6-threonylcarbamoyladenosine (t6A) on ANN-decoding tRNA species (A denotes adenosine, and N denotes any nucleotide). Targeting YRDC reduced t6A formation, suppressed global translation and inhibited tumor growth both in vitro and in vivo. Threonine is an essential substrate of YRDC. Threonine accumulated in GSCs, which facilitated t6A formation through YRDC and shifted the proteome to support mitosis-related genes with ANN codon bias. Dietary threonine restriction (TR) reduced tumor t6A formation, slowed xenograft growth and augmented anti-tumor efficacy of chemotherapy and anti-mitotic therapy, providing a molecular basis for a dietary intervention in cancer treatment.


Assuntos
Glioblastoma , Treonina , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Animais , Camundongos , Treonina/metabolismo , Treonina/genética , Biossíntese de Proteínas , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Códon/genética , RNA de Transferência/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo
17.
bioRxiv ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38645178

RESUMO

Diffuse gliomas are epigenetically dysregulated, immunologically cold, and fatal tumors characterized by mutations in isocitrate dehydrogenase (IDH). Although IDH mutations yield a uniquely immunosuppressive tumor microenvironment, the regulatory mechanisms that drive the immune landscape of IDH mutant (IDHm) gliomas remain unknown. Here, we reveal that transcriptional repression of retinoic acid (RA) pathway signaling impairs both innate and adaptive immune surveillance in IDHm glioma through epigenetic silencing of retinol binding protein 1 (RBP1) and induces a profound anti-inflammatory landscape marked by loss of inflammatory cell states and infiltration of suppressive myeloid phenotypes. Restorative retinoic acid therapy in murine glioma models promotes clonal CD4 + T cell expansion and induces tumor regression in IDHm, but not IDH wildtype (IDHwt), gliomas. Our findings provide a mechanistic rationale for RA immunotherapy in IDHm glioma and is the basis for an ongoing investigator-initiated, single-center clinical trial investigating all-trans retinoic acid (ATRA) in recurrent IDHm human subjects.

18.
Cell Rep ; 43(1): 113557, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38113141

RESUMO

Metabolic reprogramming in pediatric diffuse midline glioma is driven by gene expression changes induced by the hallmark histone mutation H3K27M, which results in aberrantly permissive activation of oncogenic signaling pathways. Previous studies of diffuse midline glioma with altered H3K27 (DMG-H3K27a) have shown that the RAS pathway, specifically through its downstream kinase, extracellular-signal-related kinase 5 (ERK5), is critical for tumor growth. Further downstream effectors of ERK5 and their role in DMG-H3K27a metabolic reprogramming have not been explored. We establish that ERK5 is a critical regulator of cell proliferation and glycolysis in DMG-H3K27a. We demonstrate that ERK5 mediates glycolysis through activation of transcription factor MEF2A, which subsequently modulates expression of glycolytic enzyme PFKFB3. We show that in vitro and mouse models of DMG-H3K27a are sensitive to the loss of PFKFB3. Multi-targeted drug therapy against the ERK5-PFKFB3 axis, such as with small-molecule inhibitors, may represent a promising therapeutic approach in patients with pediatric diffuse midline glioma.


Assuntos
Glioma , Histonas , Animais , Criança , Humanos , Camundongos , MAP Quinases Reguladas por Sinal Extracelular , Glioma/genética , Glicólise , Histonas/genética , Fosfofrutoquinase-2 , Monoéster Fosfórico Hidrolases , Transdução de Sinais
19.
Glia ; 61(11): 1862-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24038521

RESUMO

Gliomas are recognized as a heterogeneous group of neoplasms differing in their location and morphological features. These differences, between and within varying grades of gliomas, have not been explained solely on the grounds of an oncogenic stimulus. Interactions with the tumor microenvironment as well as inherent characteristics of the cell of origin are likely a source of this heterogeneity. There is an ongoing debate over the cell of origin of gliomas, where some suggest a progenitor, while others argue for a stem cell origin. Thus, it is presumed that neurogenic regions of the brain such as the subventricular zone (SVZ) containing large numbers of neural stem and progenitor populations are more susceptible to transformation. Our studies demonstrate that K-ras(G12D) cooperates with the loss of p53 to induce gliomas from both the SVZ and cortical region, suggesting that cells in the SVZ are not uniquely gliomagenic. Using combinations of doxycycline-inducible K-ras(G12D) and p53 loss, we show that tumors induced by the cooperative actions of these genes remain dependent on active K-ras expression, as deinduction of K-ras(G12D) leads to complete tumor regression despite absence of p53. These results suggest that the interplay between specific combinations of genetic alterations and susceptible cell types, rather than the site of origin, are important determinates of gliomagenesis. Additionally, this model supports the view that, although several genetic events may be necessary to confer traits associated with oncogenic transformation, inactivation of a single oncogenic partner can undermine tumor maintenance, leading to regression and disease remission.


Assuntos
Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/patologia , Genes ras/fisiologia , Glioma/metabolismo , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Ativação Enzimática , Glioma/genética , Glioma/patologia , Camundongos , Camundongos Transgênicos , Mutação/genética , Células-Tronco/patologia , Proteína Supressora de Tumor p53/deficiência
20.
Acta Neuropathol ; 126(6): 917-29, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24174164

RESUMO

Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.


Assuntos
Neoplasias Encefálicas/genética , Meduloblastoma/genética , Mutação , Regiões Promotoras Genéticas , Telomerase/genética , Adolescente , Adulto , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Genótipo , Humanos , Lactente , Masculino , Meduloblastoma/patologia , Pessoa de Meia-Idade , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA