Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 17(13): 3672-3680, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33683248

RESUMO

A variety of natural biofilms were collected from an extremely acidic environment at Río Tinto (Spain). In order to provide insights into the structure-function relationship, the microstructure of the biofilms was explored using low temperature scanning electron microscopy (LTSEM) in combination with rheological analysis. The creep-recovery experiment results have demonstrated the typical behaviour of viscoelastic materials that combine both elastic and viscous characters. The LTSEM visualization and rheological characterization of biofilms revealed that the network density increased in bacterial biofilms and was the lowest in protist Euglena biofilms. This means that, in the latter biofilms, a lower density of interactions exist, suggesting that the whole system experiences enhanced mobility under external mechanical stress. The samples with the highest dynamic moduli (Leptospirillum-Acidiphilium, Zygnemopsis, Chlorella and Cyanidium) have shown the typical strain thinning behaviour, whereas the Pinnularia and Euglena biofilms exhibited a viscous thickening reaction. The Zygnemopsis filamentous floating structure has the highest cohesive energy and has shown distinctive enhanced resilience and connectivity. This suggests that biofilms should be viewed as soft viscoelastic systems the properties of which are determined by the main organisms and their extracellular polymeric substances. The fractional Maxwell model has been found to explain the rheological behaviour of the observed complex quite well, particularly the power-law behaviour and the characteristic broad relaxation response of these systems.


Assuntos
Chlorella , Bactérias , Biofilmes , Espanha , Viscosidade
2.
Microb Ecol ; 73(1): 50-60, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27592346

RESUMO

Transcriptomic sequencing together with bioinformatic analyses and an automated annotation process led us to identify novel phytochelatin synthase (PCS) genes from two extremophilic green algae (Chlamydomonas acidophila and Dunaliella acidophila). These genes are of intermediate length compared to known PCS genes from eukaryotes and PCS-like genes from prokaryotes. A detailed phylogenetic analysis gives new insight into the complicated evolutionary history of PCS genes and provides evidence for multiple horizontal gene transfer events from bacteria to eukaryotes within the gene family. A separate subgroup containing PCS-like genes within the PCS gene family is not supported since the PCS genes are monophyletic only when the PCS-like genes are included. The presence and functionality of the novel genes in the organisms were verified by genomic sequencing and qRT-PCR. Furthermore, the novel PCS gene in Chlamydomonas acidophila showed very strong induction by cadmium. Cloning and expression of the gene in Escherichia coli clearly improves its cadmium resistance. The gene in Dunaliella was not induced, most likely due to gene duplication.


Assuntos
Aminoaciltransferases/genética , Cádmio/farmacologia , Chlamydomonas/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Extremófilos/genética , Chlamydomonas/metabolismo , Reação em Cadeia da Polimerase , Poluentes da Água/farmacologia , Poluição Química da Água
3.
Microb Ecol ; 72(3): 595-607, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27484342

RESUMO

Heavy metals are toxic compounds known to cause multiple and severe cellular damage. However, acidophilic extremophiles are able to cope with very high concentrations of heavy metals. This study investigated the stress response under natural environmental heavy metal concentrations in an acidophilic Dunaliella acidophila. We employed Illumina sequencing for a de novo transcriptome assembly and to identify changes in response to high cadmium concentrations and natural metal-rich water. The photosynthetic performance was also estimated by pulse amplitude-modulated (PAM) fluorescence. Transcriptomic analysis highlights a number of processes mainly related to a high constitutive expression of genes involved in oxidative stress and response to reactive oxygen species (ROS), even in the absence of heavy metals. Photosynthetic activity seems to be unaltered under short-term exposition to Cd and chronic exposure to natural metal-rich water, probably due to an increase in the synthesis of structural photosynthetic components preserving their functional integrity. An overrepresentation of Gene Ontology (GO) terms related to metabolic activities, transcription, and proteosomal catabolic process was observed when D. acidophila grew under chronic exposure to natural metal-rich water. GO terms involved in carbohydrate metabolic process, reticulum endoplasmic and Golgi bodies, were also specifically overrepresented in natural metal-rich water library suggesting an endoplasmic reticulum stress response.


Assuntos
Cádmio/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Metais Pesados/metabolismo , Transcriptoma/genética , Água/metabolismo , Sequência de Bases , Cádmio/toxicidade , Tolerância a Medicamentos/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Metais Pesados/toxicidade , Estresse Oxidativo , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Água/química
4.
Extremophiles ; 19(3): 657-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25841750

RESUMO

High concentrations of heavy metals are typical of acidic environments. Therefore, studies on acidophilic organisms in their natural environments improve our understanding on the evolution of heavy metal tolerance and detoxification in plants. Here we sequenced the transcriptome of the extremophilic microalga Chlamydomonas acidophila cultivated in control conditions and with 500 µM of copper for 24 h. High-throughput 454 sequencing was followed by de novo transcriptome assembly. The reference transcriptome was annotated and genes related to heavy metal tolerance and abiotic stress were identified. Analyses of differentially expressed transcripts were used to detect genes involved in metabolic pathways related to abiotic stress tolerance, focusing on effects caused by increased levels of copper. Both transcriptomic data and observations from PAM fluorometry analysis suggested that the photosynthetic activity of C. acidophila is not adversely affected by addition of high amounts of copper. Up-regulated transcripts include several transcripts related to photosynthesis and carbohydrate metabolism, transcripts coding for general stress response, and a transcript annotated as homologous to the oil-body-associated protein HOGP coding gene. The first de novo assembly of C. acidophila significantly increases transcriptomic data available on extremophiles and green algae and thus provides an important reference for further molecular genetic studies. The differences between differentially expressed transcripts detected in our study suggest that the response to heavy metal exposure in C. acidophila is different from other studied green algae.


Assuntos
Chlamydomonas/genética , Cobre/toxicidade , Tolerância a Medicamentos/genética , Genes de Plantas , Estresse Fisiológico/genética , Transcriptoma , Adaptação Fisiológica , Chlamydomonas/efeitos dos fármacos , Chlamydomonas/metabolismo , Fotossíntese
5.
Microb Ecol ; 70(4): 936-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26045157

RESUMO

The exposure of fresh sulfide-rich lithologies by the retracement of the Nevado Pastoruri glacier (Central Andes, Perú) is increasing the presence of heavy metals in the water as well as decreasing the pH, producing an acid rock drainage (ARD) process in the area. We describe the microbial communities of an extreme ARD site in Huascarán National Park as well as their correlation with the water physicochemistry. Microbial biodiversity was analyzed by FLX 454 sequencing of the 16S rRNA gene. The suggested geomicrobiological model of the area distinguishes three different zones. The proglacial zone is located in the upper part of the valley, where the ARD process is not evident yet. Most of the OTUs detected in this area were related to sequences associated with cold environments (i.e., psychrotolerant species of Cyanobacteria or Bacteroidetes). After the proglacial area, an ARD-influenced zone appeared, characterized by the presence of phylotypes related to acidophiles (Acidiphilium) as well as other species related to acidic and cold environments (i.e., acidophilic species of Chloroflexi, Clostridium and Verrumicrobia). Sulfur- and iron-oxidizing acidophilic bacteria (Acidithiobacillus) were also identified. The post-ARD area was characterized by the presence of OTUs related to microorganisms detected in soils, permafrost, high mountain environments, and deglaciation areas (Sphingomonadales, Caulobacter or Comamonadaceae).


Assuntos
Bactérias/genética , Biodiversidade , Camada de Gelo/microbiologia , RNA Ribossômico 16S/genética , Microbiologia da Água , Bactérias/classificação , Bactérias/metabolismo , Temperatura Baixa , Ecossistema , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Parques Recreativos , Peru , Filogenia , Solo , Sulfetos/metabolismo , Enxofre/metabolismo , Água/análise , Água/química
6.
Sci Total Environ ; 924: 171626, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38471590

RESUMO

Las Tablas de Daimiel National Park (TDNP, Iberian Peninsula) is a semi-arid wetland of international significance for waterfowl and serves as a migratory route for various bird species. However, TDNP presents strong anthropization and fluctuating water levels, making it a highly fragile ecosystem. Water physico-chemical parameters and microbial diversity of the three domains (Bacteria-Archaea- Eukarya) were analysed in Zone A and Zone B of the wetland (a total of eight stations) during spring and summer, aiming to determine how seasonal changes influence the water quality, trophic status and ultimately, the microbial community composition. Additionally, Photosynthetically Active Radiation (PAR) was used to determine the trophic status instead of transparency using Secchi disk, setting the threshold to 20-40 µmol/sm2 for benthic vegetation growth. In spring, both zones of the wetland were considered eutrophic, and physico-chemical parameters as well as microbial diversity were similar to other wetlands, with most abundant bacteria affiliated to Actinobacteriota, Cyanobacteria, Bacteroidota, Gammaproteobacteria and Verrumicrobiota. Methane-related taxa like Methanosarcinales and photosynthetic Chlorophyta were respectively the most representative archaeal and eukaryotic groups. In summer, phytoplankton bloom led by an unclassified Cyanobacteria and mainly alga Hydrodictyon was observed in Zone A, resulting in an increase of turbidity, pH, phosphorus, nitrogen, chlorophyll-a and phycocyanin indicating the change to hypertrophic state. Microbial community composition was geographical and seasonal shaped within the wetland as response to changes in trophic status. Archaeal diversity decreases and methane-related species increase due to sediment disturbance driven by fish activity, wind, and substantial water depth reduction. Zone B in summer suffers less seasonal changes, maintaining the eutrophic state and still detecting macrophyte growth in some stations. This study provides a new understanding of the interdomain microbial adaptation following the ecological evolution of the wetland, which is crucial to knowing these systems that are ecological niches with high environmental value.


Assuntos
Cianobactérias , Microbiota , Animais , Áreas Alagadas , Espanha , Parques Recreativos , Cianobactérias/metabolismo , Archaea , Metano/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-35805349

RESUMO

Phytochelatins (PCs) are cysteine-rich small peptides, enzymatically synthesized from reduced glutathione (GSH) by cytosolic enzyme phytochelatin synthase (PCS). The open reading frame (ORF) of the phytochelatin synthase CaPCS2 gene from the microalgae Chlamydomonas acidophila was heterologously expressed in Escherichia coli strain DH5α, to analyze its role in protection against various abiotic agents that cause cellular stress. The transformed E. coli strain showed increased tolerance to exposure to different heavy metals (HMs) and arsenic (As), as well as to acidic pH and exposure to UVB, salt, or perchlorate. In addition to metal detoxification activity, new functions have also been reported for PCS and PCs. According to the results obtained in this work, the heterologous expression of CaPCS2 in E. coli provides protection against oxidative stress produced by metals and exposure to different ROS-inducing agents. However, the function of this PCS is not related to HM bioaccumulation.


Assuntos
Chlamydomonas , Metais Pesados , Aminoaciltransferases , Cádmio/metabolismo , Chlamydomonas/genética , Escherichia coli/genética , Glutationa/metabolismo , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Fitoquelatinas/metabolismo
8.
Environ Microbiol ; 13(8): 2351-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21605310

RESUMO

Photosynthesis versus irradiance curves and their associated photosynthetic parameters from different phototrophic biofilms isolated from an extreme acidic environment (Río Tinto, SW, Spain) were studied in order to relate them to their species composition and the physicochemical characteristics of their respective sampling locations. The results indicated that the biofilms are low light acclimated showing a photoinhibition model; only floating communities of filamentous algae showed a light saturation model. Thus, all the biofilms analysed showed photoinhibition over 60 µmol photon m(-2) s(-1) except in the case of Zygnemopsis sp. sample, which showed a light-saturated photosynthesis model under irradiations higher that 200 µmol photon m(-2) s(-1). The highest values of compensation light intensity (I(c)) were showed also by Zygnemosis sp. biofilm (c. 40 µmol photon m(-2) s(-1)), followed by Euglena mutabilis and Chlorella sp. samples (c. 20 µmol photon m(-2) s(-1)). The diatom sample showed the lowest I(c) values (c. 5 µmol photon m(-2) s(-1)). As far as we know this is the first attempt to determine the photosynthetic activity of low pH and heavy metal tolerant phototrophic biofilms, which may give light in the understanding of the ecological importance of these biofilms for the maintenance of the primary production of these extreme and unique ecosystems.


Assuntos
Ácidos/química , Biofilmes , Ecossistema , Fotossíntese/fisiologia , Rios/química , Rios/microbiologia , Adaptação Fisiológica , Clorófitas/fisiologia , Diatomáceas/fisiologia , Luz , Metais Pesados , Espanha
9.
Appl Environ Microbiol ; 77(8): 2685-94, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21357431

RESUMO

Effluent from La Zarza-Perrunal, a mine on the Iberian Pyrite Belt, was chosen to be geomicrobiologically characterized along a 1,200-m stream length. The pH at the origin was 3.1, which decreased to 1.9 at the final downstream sampling site. The total iron concentration showed variations along the effluent, resulting from (i) significant hydrolysis and precipitation of Fe(III) (especially along the first reach of the stream) and (ii) concentration induced by evaporation (mostly in the last reach). A dramatic increase in iron oxidation was observed along the course of the effluent [from Fe(III)/Fe(total) = 0.11 in the origin to Fe(III)/Fe(total) = 0.99 at the last sampling station]. A change in the O(2) content along the effluent, from nearly anoxic at the origin to saturation with oxygen at the last sampling site, was also observed. Prokaryotic and eukaryotic diversity throughout the effluent was determined by microscopy and 16S rRNA gene cloning and sequencing. Sulfate-reducing bacteria (Desulfosporosinus and Syntrophobacter) were detected only near the origin. Some iron-reducing bacteria (Acidiphilium, Acidobacterium, and Acidosphaera) were found throughout the river. Iron-oxidizing microorganisms (Leptospirillum spp., Acidithiobacillus ferrooxidans, and Thermoplasmata) were increasingly detected downstream. Changes in eukaryotic diversity were also remarkable. Algae, especially Chlorella, were present at the origin, forming continuous, green, macroscopic biofilms, subsequently replaced further downstream by sporadic Zygnematales filaments. Taking into consideration the characteristics of this acidic extreme environment and the physiological properties and spatial distribution of the identified microorganisms, a geomicrobiological model of this ecosystem is advanced.


Assuntos
Água Doce/microbiologia , Mineração , Sequência de Bases , Biofilmes , Ecossistema , Concentração de Íons de Hidrogênio , Hipóxia , Ferro/análise , Ferro/metabolismo , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Oxirredução , Oxigênio/análise , Oxigênio/metabolismo , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Espanha
10.
Front Microbiol ; 12: 732961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737729

RESUMO

Microorganisms are ubiquitous in the environment, and the atmosphere is no exception. However, airborne bacterial communities are some of the least studied. Increasing our knowledge about these communities and how environmental factors shape them is key to understanding disease outbreaks and transmission routes. We describe airborne bacterial communities at two different sites in Tenerife, La Laguna (urban, 600 m.a.s.l.) and Izaña (high mountain, 2,400 m.a.s.l.), and how they change throughout the year. Illumina MiSeq sequencing was used to target 16S rRNA genes in 293 samples. Results indicated a predominance of Proteobacteria at both sites (>65%), followed by Bacteroidetes, Actinobacteria, and Firmicutes. Gammaproteobacteria were the most frequent within the Proteobacteria phylum during spring and winter, while Alphaproteobacteria dominated in the fall and summer. Within the 519 genera identified, Cellvibrio was the most frequent during spring (35.75%) and winter (30.73%); Limnobacter (24.49%) and Blastomonas (19.88%) dominated in the summer; and Sediminibacterium represented 10.26 and 12.41% of fall and winter samples, respectively. Sphingomonas was also identified in 17.15% of the fall samples. These five genera were more abundant at the high mountain site, while other common airborne bacteria were more frequent at the urban site (Kocuria, Delftia, Mesorhizobium, and Methylobacterium). Diversity values showed different patterns for both sites, with higher values during the cooler seasons in Izaña, whereas the opposite was observed in La Laguna. Regarding wind back trajectories, Tropical air masses were significantly different from African ones at both sites, showing the highest diversity and characterized by genera regularly associated with humans (Pseudomonas, Sphingomonas, and Cloacibacterium), as well as others related to extreme conditions (Alicyclobacillus) or typically associated with animals (Lachnospiraceae). Marine and African air masses were consistent and very similar in their microbial composition. By contrast, European trajectories were dominated by Cellvibrio, Pseudomonas, Pseudoxanthomonas, and Sediminibacterium. These data contribute to our current state of knowledge in the field of atmospheric microbiology. However, future studies are needed to increase our understanding of the influence of different environmental factors on atmospheric microbial dispersion and the potential impact of airborne microorganisms on ecosystems and public health.

11.
Sci Total Environ ; 761: 143213, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33162145

RESUMO

Nowadays, there is no direct evidence about the presence of microplastics (MPs) in the atmosphere above ground level. Here, we investigated the occurrence, chemical composition, shape, and size of MPs in aircraft sampling campaigns flying within and above the planetary boundary layer (PBL). The results showed that MPs were present with concentrations ranging from 1.5 MPs m-3 above rural areas to 13.9 MPs m-3 above urban areas. MPs represented up to almost one third of the total amount of microparticles collected. Fourier Transform Infrared Spectroscopy allowed identifying seven types of MPs with the highest diversity corresponding to urban areas. Atmospheric transport and deposition simulations were performed using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Air mass trajectory analyses showed that MPs could be transported more than 1000 km before being deposited. This pioneer study is the first evidence of the microplastic presence above PBL and their potential long-range transport from their point of release even crossing distant borders.

12.
Proteomics ; 10(10): 2026-36, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20217866

RESUMO

A proteomic approach including 2-DE and MALDI-TOF analysis has been developed to identify the soluble proteins of the unicellular photosynthetic algae Chlamydomonas sp. isolated from an extreme acidic environment, Río Tinto (southwest Spain). We have analyzed the soluble proteome obtained from whole cells growing on metal-rich natural acidic water from the river in comparison with the same strain growing in artificial BG-11 media. The most drastic effect was the decrease in the abundance of the ribulose-1,5-biphosphate carboxylase as well as other enzymes related to photosynthesis. However, phytochrome B, phosphoribulokinase, and phosphoglycerate kinase were upregulated when cells were grown in metal-rich acidic water. Besides, increased accumulation of two Hsps, Hsp70 and Hsp90 as well as other stress-related enzymes were also found in the cells growing in natural acidic water. These results suggest that naturally occurring metal-rich water induces a stress response in acidophilic Chlamydomonas forcing algal cells to reorganize their metabolic pathways as an adaptive response to these environmental conditions.


Assuntos
Proteínas de Algas/análise , Chlamydomonas/química , Metais/análise , Proteoma/análise , Água/química , Ácidos/química , Eletroforese em Gel Bidimensional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Int Microbiol ; 13(1): 21-32, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20890838

RESUMO

The composition of the eukaryotic community and the three-dimensional structure of diverse phototrophic microbial mats from two hot springs in Iceland (Seltun and Hveradalir geothermal areas) were explored by comparing eukaryotic assemblages from microbial mats. Samples were collected in July 2007 from 15 sampling stations along thermal and pH gradients following both hot springs. Physicochemical data revealed high variability in terms of pH (ranging from 2.8 to 7), with high concentrations of heavy metals, including up to 20 g Fe/l, 80 mg Zn/l, 117 mg Cu/l, and 39 mg Ni/l at the most acidic sampling points. Phylogenetic analysis of 18S rDNA genes revealed a diversity of sequences related to several taxa, including members of the Bacillariophyta, Chlorophyta, Rhodophyta, and Euglenophyta phyla as well as ciliates, amoebae, and stramenopiles. The closest relatives to some of the sequences detected came from acidophilic organisms, even when the samples were collected at circumneutral water locations. Electron microscopy showed that most of the microecosystems analyzed were organized as phototrophic microbial mats in which filamentous cyanobacteria usually appeared as a major component. Deposits of amorphous minerals rich in silica, iron, and aluminium around the filaments were frequently detected.


Assuntos
Biodiversidade , Eucariotos/classificação , Eucariotos/genética , Sedimentos Geológicos/microbiologia , Fontes Termais/microbiologia , Metagenoma , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Eucariotos/citologia , Eucariotos/fisiologia , Fontes Termais/química , Concentração de Íons de Hidrogênio , Islândia , Metais Pesados/análise , Microscopia Eletrônica , Processos Fototróficos , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Temperatura
14.
Artigo em Inglês | MEDLINE | ID: mdl-32138382

RESUMO

The cytotoxicity of cadmium (Cd), arsenate (As(V)), and arsenite (As(III)) on a strain of Chlamydomonas acidophila, isolated from the Rio Tinto, an acidic environment containing high metal(l)oid concentrations, was analyzed. We used a broad array of methods to produce complementary information: cell viability and reactive oxygen species (ROS) generation measures, ultrastructural observations, transmission electron microscopy energy dispersive x-ray microanalysis (TEM-XEDS), and gene expression. This acidophilic microorganism was affected differently by the tested metal/metalloid: It showed high resistance to arsenic while Cd was the most toxic heavy metal, showing an LC50 = 1.94 µM. Arsenite was almost four-fold more toxic (LC50= 10.91 mM) than arsenate (LC50 = 41.63 mM). Assessment of ROS generation indicated that both arsenic oxidation states generate superoxide anions. Ultrastructural analysis of exposed cells revealed that stigma, chloroplast, nucleus, and mitochondria were the main toxicity targets. Intense vacuolization and accumulation of energy reserves (starch deposits and lipid droplets) were observed after treatments. Electron-dense intracellular nanoparticle-like formation appeared in two cellular locations: inside cytoplasmic vacuoles and entrapped into the capsule, around each cell. The chemical nature (Cd or As) of these intracellular deposits was confirmed by TEM-XEDS. Additionally, they also contained an unexpected high content in phosphorous, which might support an essential role of poly-phosphates in metal resistance.


Assuntos
Arsênio , Cádmio , Chlamydomonas , Poluentes da Água/toxicidade , Arsênio/toxicidade , Cádmio/toxicidade , Chlamydomonas/efeitos dos fármacos , Chlamydomonas/fisiologia , Chlamydomonas/ultraestrutura , Extremófilos
15.
Sci Rep ; 10(1): 6837, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321958

RESUMO

We have analyzed the bacterial community of a large Saharan dust event in the Iberian Peninsula and, for the first time, we offer new insights regarding the bacterial distribution at different altitudes of the lower troposphere and the replacement of the microbial airborne structure as the dust event receeds. Samples from different open-air altitudes (surface, 100 m and 3 km), were obtained onboard the National Institute for Aerospace Technology (INTA) C-212 aircrafts. Samples were collected during dust and dust-free air masses as well two weeks after the dust event. Samples related in height or time scale seems to show more similar community composition patterns compared with unrelated samples. The most abundant bacterial species during the dust event, grouped in three different phyla: (a) Proteobacteria: Rhizobiales, Sphingomonadales, Rhodobacterales, (b) Actinobacteria: Geodermatophilaceae; (c) Firmicutes: Bacillaceae. Most of these taxa are well known for being extremely stress-resistant. After the dust intrusion, Rhizobium was the most abundant genus, (40-90% total sequences). Samples taken during the flights carried out 15 days after the dust event were much more similar to the dust event samples compared with the remaining samples. In this case, Brevundimonas, and Methylobacterium as well as Cupriavidus and Mesorizobium were the most abundant genera.


Assuntos
Microbiologia do Ar , Bactérias , Poeira , África do Norte , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Consórcios Microbianos
16.
Sci Total Environ ; 650(Pt 1): 384-393, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30199683

RESUMO

The ability to establish biofilms is a key trait for microorganisms growing in extreme environments. The extracellular polymeric substances (EPS) present in biofilms provide not only surface attachment, but also protection against all kinds of environmental stressors, including desiccation, salinity, temperature or heavy metal pollution. The acquisition of suitable biofilm characteristics might thus be an important process mediating the adaptation of microorganisms to novel environmental conditions. In this work we have characterized the EPS of 20 phylogenetically diverse biofilms collected in situ from five contrasting extreme environments, including two geothermal areas (Copahue, Argentina; Seltun, Iceland), two cold areas (Pastoruri glacier, Peru; Byers Peninsula, Antarctica) and one extremely acidic river (Río Tinto, Spain). Biofilms were subjected to biochemical characterization, glycan profiling and immunoprofiling with an antibody microarray. Our results showed that environmental conditions strongly influence biofilm characteristics, with microorganisms from the same environment achieving similar EPS compositions regardless of the phylogeny of their main species. The concentration of some monosaccharides in the EPS could be related to environmental conditions such as temperature or heavy metal toxicity, suggesting that in some cases stress resistance can be mediated by specific sugars. Overall, our results highlight the existence of conserved EPS compositional patterns for each extreme environment, which could in turn be exploited to engineer ecological adaptations in genetically modified microorganisms.


Assuntos
Adaptação Fisiológica/fisiologia , Biofilmes , Matriz Extracelular/química , Ambientes Extremos , Regiões Antárticas , Argentina , Bactérias/química , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , Islândia , Monossacarídeos/análise , Peru , Polissacarídeos/análise , RNA Ribossômico 16S/genética , Espanha
17.
Int Microbiol ; 11(4): 251-60, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19204897

RESUMO

Four algal photosynthetic biofilms were collected from the Río Tinto (SW Spain) at four localities: AG, Euglena and Pinnularia biofilms; ANG, Chlorella and Pinnularia biofilms; RI, Cyanidium and Dunaliella biofilms; and CEM, Cyanidium, Euglena and Pinnularia biofilms. Community composition and structure were studied by a polyphasic approach consisting of 16S rRNA analysis, scanning electron microscopy by back-scattered electron detection mode (SEM-BSE), and fluorescence in-situ hybridization (FISH). Acidophilic prokaryotes associated with algal photosynthetic biofilms included sequences related to the Alpha-, Beta-, and Gammaproteobacteria (phylum Proteobacteria) and to the phyla Nitrospira, Actinobacteria, Acidobacteria and Firmicutes. Sequences from the Archaea domain were also identified. No more than seven distinct lineages were detected in any biofilm, except for those from RI, which contained fewer groups of Bacteria. Prokaryotic communities of the thinnest algal photosynthetic biofilms (-100 microm) were more related to those in the water column, including Leptospirillum populations. In general, thick biofilms (200 microm) generate microniches that could facilitate the development of less-adapted microorganisms (coming from the surrounding environment) to extreme conditions, thus resulting in a more diverse prokaryotic biofilm.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Eucariotos/microbiologia , Rios/microbiologia , Archaea/genética , Archaea/ultraestrutura , Bactérias/genética , Bactérias/ultraestrutura , Biofilmes , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eucariotos/ultraestrutura , Genes de RNAr , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Espanha
18.
Aquat Toxicol ; 88(4): 257-66, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-18554732

RESUMO

To evaluate the importance of the extracellular matrix in relation to heavy metal binding capacity in extreme acidic environments, the extracellular polymeric substances (EPS) composition of 12 biofilms isolated from Río Tinto (SW, Spain) was analyzed. Each biofilm was composed mainly by one or two species of eukaryotes, although other microorganisms were present. EPS ranged from 130 to 439 mg g(-1) biofilm dry weight, representing between 15% and the 40% of the total biofilm dry weight (DW). Statistically significant differences (p<0.05) were found in the amount of total EPS extracted from biofilms dominated by the same organism at different sampling points. The amount of EPS varied among different biofilms collected from the same sampling location. Colloidal EPS ranged from 42 to 313 mg g(-1) dry weight; 10% to 30% of the total biofilm dry weight. Capsular EPS ranged from 50 to 318 mg g(-1) dry weight; 5% to 30% of the total biofilm dry weight. Seven of the 12 biofilms showed higher amounts of capsular than colloidal EPS (p<0.05). Total amount of EPS decreased when total cell numbers and pH increased. There was a positive correlation between EPS concentration and heavy metal concentration in the water. Observations by low temperature scanning electron microscopy (LTSEM) revealed the mineral adsorption in the matrix of EPS and onto the cell walls. EPS in all biofilms were primarily composed of carbohydrates, heavy metals and humic acid, plus small quantities of proteins and DNA. After carbohydrates, heavy metals were the second main constituents of the extracellular matrix. Their total concentrations ranged from 3 to 32 mg g(-1) biofilm dry weight, reaching up to 16% of the total composition. In general, the heavy metal composition of the EPS extracted from the biofilms closely resembled the metal composition of the water from which the biofilms were collected.


Assuntos
Biofilmes , Matriz Extracelular/química , Metais Pesados/análise , Rios/microbiologia , Adsorção , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Espanha
19.
Aquat Toxicol ; 200: 62-72, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29727772

RESUMO

To better understand heavy metal tolerance in Chlamydomonas acidophila, an extremophilic green alga, we assembled its transcriptome and measured transcriptomic expression before and after Cd exposure in this and the neutrophilic model microalga Chlamydomonas reinhardtii. Genes possibly related to heavy metal tolerance and detoxification were identified and analyzed as potential key innovations that enable this species to live in an extremely acid habitat with high levels of heavy metals. In addition we provide a data set of single orthologous genes from eight green algal species as a valuable resource for comparative studies including eukaryotic extremophiles. Our results based on differential gene expression, detection of unique genes and analyses of codon usage all indicate that there are important genetic differences in C. acidophila compared to C. reinhardtii. Several efflux family proteins were identified as candidate key genes for adaptation to acid environments. This study suggests for the first time that exposure to cadmium strongly increases transposon expression in green algae, and that oil biosynthesis genes are induced in Chlamydomonas under heavy metal stress. Finally, the comparison of the transcriptomes of several acidophilic and non-acidophilic algae showed that the Chlamydomonas genus is polyphyletic and that acidophilic algae have distinctive aminoacid usage patterns.


Assuntos
Chlamydomonas/efeitos dos fármacos , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Actinas/genética , Actinas/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Cádmio/metabolismo , Cádmio/toxicidade , Hidrolases de Éster Carboxílico/classificação , Hidrolases de Éster Carboxílico/genética , Chlamydomonas/classificação , Chlamydomonas/metabolismo , Dioxigenases/classificação , Dioxigenases/genética , Tolerância a Medicamentos/genética , Metais Pesados/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Análise de Sequência de RNA , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
20.
Syst Appl Microbiol ; 30(7): 531-46, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17644297

RESUMO

The eukaryotic community of the Río Tinto (SW, Spain) was surveyed in fall, winter and spring through the combined use of traditional microscopy and molecular approaches, including Denaturing Gradient Gel Electrophoresis (DGGE) and sequence analysis of 18S rRNA gene fragments. Eukaryotic assemblages of surface sediment biofilms collected in January, May and September 2002 were compared from 13 sampling stations along the river. Physicochemical data revealed extremely acidic conditions (the pH ranged from 0.9 to 2.5) with high concentrations of heavy metals, including up to 20 mg l(-1) Fe, 317 mg l(-1) Zn, 47 mg l(-1) As, 42 mg l(-1) Cd and 4 mg l(-1) Ni. In total, 20 taxa were identified, including members of the Bacillariophyta, Chlorophyta and Euglenophyta phyla as well as ciliates, cercomonads, amoebae, stramenopiles, fungi, heliozoans and rotifers. In general, total cell abundances were highest in fall and spring but decreased drastically in winter, and the sampling stations with the most extreme conditions showed the lowest number of cells, as well as the lowest diversity. Species diversity did not vary much during the year. Only the filamentous algae showed a dramatic seasonal change, since they almost disappeared in winter and reached the highest biomass during the summer. Principal Components Analysis (PCA) showed a high inverse correlation between pH and most of the heavy metals analyzed, as well as Dunaliella sp., while Chlamydomonas sp. was directly related to pH during May and September. Three heavy metals (Zn, Cu and Ni) remained separate from the rest and showed an inverse correlation with most of the species analyzed, except for Dunaliella sp.


Assuntos
Biodiversidade , Células Eucarióticas/classificação , Água Doce/microbiologia , Animais , Biofilmes/crescimento & desenvolvimento , DNA Ribossômico/química , DNA Ribossômico/genética , Diatomáceas/classificação , Diatomáceas/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Eucariotos/classificação , Eucariotos/isolamento & purificação , Células Eucarióticas/citologia , Água Doce/química , Fungos/classificação , Fungos/isolamento & purificação , Genes de RNAr , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , Filogenia , RNA Ribossômico 18S/genética , Rotíferos/classificação , Rotíferos/isolamento & purificação , Estações do Ano , Análise de Sequência de DNA , Espanha , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA