Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 166: 105479, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33549728

RESUMO

Astaxanthin is a natural C40 carotenoid with numerous reported biological functions, most of them associated with its antioxidant and anti-inflammatory activity, standing out from other antioxidants as it has shown the highest oxygen radical absorbance capacity (ORAC), 100-500 times higher than ⍺-tocopherol and a 10 times higher free radical inhibitory activity than related antioxidants (α-tocopherol, α-carotene, ß -carotene, lutein and lycopene). In vitro and in vivo studies have associated astaxanthin's unique molecular features with several health benefits, including neuroprotective, cardioprotective and antitumoral properties, suggesting its therapeutic potential for the prevention or co-treatment of dementia, Alzheimer, Parkinson, cardiovascular diseases and cancer. Benefits on skin and eye health promotion have also been reported, highlighting its potential for the prevention of skin photo-aging and the treatment of eye diseases like glaucoma, cataracts and uveitis. In this review, we summarize and discuss the currently available evidence on astaxanthin benefits, with a particular focus on human clinical trials, including a brief description of the potential mechanisms of action responsible for its biological activities.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Ensaios Clínicos como Assunto , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Xantofilas/farmacocinética , Xantofilas/farmacologia , Xantofilas/uso terapêutico
2.
Plants (Basel) ; 12(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375912

RESUMO

Edible seaweeds are an excellent source of macronutrients, micronutrients, and bioactive compounds, and they can be consumed raw or used as ingredients in food products. However, seaweeds may also bioaccumulate potentially hazardous compounds for human health and animals, namely, heavy metals. Hence, the purpose of this review is to analyze the recent trends of edible seaweeds research: (i) nutritional composition and bioactive compounds, (ii) the use and acceptability of seaweeds in foodstuffs, (iii) the bioaccumulation of heavy metals and microbial pathogens, and (iv) current trends in Chile for using seaweeds in food. In summary, while it is evident that seaweeds are consumed widely worldwide, more research is needed to characterize new types of edible seaweeds as well as their use as ingredients in the development of new food products. Additionally, more research is needed to maintain control of the presence of heavy metals to assure a safe product for consumers. Finally, the need to keep promoting the benefits of seaweed consumption is emphasized, adding value in the algae-based production chain, and promoting a social algal culture.

3.
Biotechnol Rep (Amst) ; 38: e00798, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37181274

RESUMO

Herpes simplex virus type 2 (HSV-2) is a human infectious agent with significant impact on public health due to its high prevalence in the population and its ability to elicit a wide range of diseases, from mild to severe. Although several antiviral drugs, such as acyclovir, are currently available to treat HSV-2-related clinical manifestations, their effectiveness is poor. Therefore, the identification and development of new antiviral drugs against HSV-2 is necessary. Seaweeds are attractive candidates for such purposes because they are a vast source of natural products due to their highly diverse compounds, many with demonstrated biological activity. In this study, we evaluated the in vitro antiviral potential of red algae extracts obtained from Agarophyton chilense, Mazzaella laminarioides, Porphyridium cruentum, and Porphyridium purpureum against HSV-2. The phycocolloids agar and carrageenan obtained from the macroalgae dry biomass of A. chilense and M. laminarioides and the exopolysaccharides from P. cruentum and P. purpureum were evaluated. The cytotoxicity of these extracts and the surpluses obtained in the extraction process of the agar and carrageenans were evaluated in human epithelial cells (HeLa cells) in addition to their antiviral activity against HSV-2, which were used to calculate selectivity indexes (SIs). Several compounds displayed antiviral activity against HSV-2, but carrageenans were not considered as a potential antiviral therapeutic agent when compared to the other algae extracts with a SI of 23.3. Future assays in vivo models for HSV-2 infection should reveal the therapeutic potential of these algae compounds as new antivirals against this virus.

4.
Comput Struct Biotechnol J ; 20: 1506-1527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422968

RESUMO

Phycobiliproteins (PBPs) are fluorescent proteins of various colors, including fuchsia, purple-blue and cyan, that allow the capture of light energy in auxiliary photosynthetic complexes called phycobilisomes (PBS). PBPs have several highly preserved structural and physicochemical characteristics. In the PBS context, PBPs function is capture luminous energy in the 450-650 nm range and delivers it to photosystems allowing photosynthesis take place. Besides the energy harvesting function, PBPs also have shown to have multiple biological activities, including antioxidant, antibacterial and antitumours, making them an interesting focus for different biotechnological applications in areas like biomedicine, bioenergy and scientific research. Nowadays, the main sources of PBPs are cyanobacteria and micro and macro algae from the phylum Rhodophyta. Due to the diverse biological activities of PBPs, they have attracted the attention of different industries, such as food, biomedical and cosmetics. This is why a large number of patents related to the production, extraction, purification of PBPs and their application as cosmetics, biopharmaceuticals or diagnostic applications have been generated, looking less ecological impact in the natural prairies of macroalgae and less culture time or higher productivity in cyanobacteria to satisfy the markets and applications that require high amounts of these molecules. In this review, we summarize the main structural characteristics of PBPs, their biosynthesys and biotechnological applications. We also address current trends and future perspectives of the PBPs market.

5.
Carbohydr Polym ; 230: 115561, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887876

RESUMO

The current hydrocolloid industry requires new techniques for biomass characterization, which can quickly and ecologically characterize contained sugars. This work proposes the use of Fourier Transform Infrared microspectroscopy in combination with multivariate methods, to localize and identify the main carbohydrates and other components present in fresh brown seaweeds, avoiding time-consuming samples pre-treatments. Infrared images of Macrocystis pyrifera samples were analyzed by Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis (PCA) as chemometrics techniques to identify the compounds. MCR-ALS was the best strategy, delivering pure spectra of chemical compound that PCA did not. The carbohydrates identified by this method were 1-3-ß-glucans divided into endofibers and laminarin; two types of fucoidans (rich in fucose or mannuronic acid), alginate and mannitol, besides other compounds such as proteins. This technique represents an opportunity for the hydrocolloid industry for a modern, rapid and environmentally-friendly characterization of macroalgal biomass to enhance its use.


Assuntos
Carboidratos/isolamento & purificação , Polissacarídeos/isolamento & purificação , Alga Marinha/química , Espectroscopia de Infravermelho com Transformada de Fourier , Alginatos/química , Carboidratos/química , Análise dos Mínimos Quadrados , Análise Multivariada , Polissacarídeos/química , Polissacarídeos/classificação , Análise de Componente Principal , Açúcares/química , Açúcares/isolamento & purificação
6.
Front Microbiol ; 11: 139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117158

RESUMO

Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent within the human population and are characterized by lifelong infections and sporadic recurrences due to latent neuron infection. Upon reactivations, HSVs may manifest either, symptomatically or asymptomatically and be shed onto others through mucosae body fluids. Although, HSVs can produce severe disease in humans, such as life-threatening encephalitis and blindness, the most common symptoms are skin and mucosal lesions in the oro-facial and the genital areas. Nucleoside analogs with antiviral activity can prevent severe HSV infection, yet they are not very effective for treating skin manifestations produced by these viruses, as they only reduce in a few days at most the duration of lesions. Additionally, HSV variants that are resistant to these antivirals may arise, especially in immunosuppressed individuals. Thus, new antivirals that can reduce the severity and duration of these cutaneous manifestations would certainly be welcome. Here, we review currently available anti-herpetic therapies, novel molecules being assessed in clinical trials and new botanical compounds reported in the last 20 years with antiviral activities against HSVs that might represent future treatments against these viruses.

7.
Front Microbiol ; 11: 2006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013743

RESUMO

Herpes simplex viruses (HSVs) type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent in the human population, and the infections they produce are lifelong with frequent reactivations throughout life. Both viruses produce uncomfortable and sometimes painful lesions in the orofacial and genital areas, as well as herpetic gingivostomatitis, among other clinical manifestations. At present, the most common treatments against HSVs consist of nucleoside analogs that target the viral polymerases. However, such drugs are poorly effective for treating skin lesions, as they only reduce in 1-2 days the duration of the herpetic lesions. Additionally, viral isolates resistant to these drugs can emerge in immunosuppressed individuals, and second-line drugs for such variants are frequently accompanied by adverse effects requiring medical supervision. Thus, novel or improved therapeutic drugs for treating HSV lesions are needed. Here, we assessed the potential antiviral activity of aqueous extracts obtained from two brown macroalgae, namely Macrocystis pyrifera and Durvillaea antarctica against HSVs. Both extracts showed antiviral activity against acyclovir-sensitive and acyclovir-resistant HSV-1 and HSV-2. Our analyses show that there is a significant antiviral activity associated with proteins in the extract, although other compounds also seem to contribute to inhibiting the replication cycle of these viruses. Evaluation of the algae extracts as topical formulations in an animal model of HSV-1 skin infection significantly reduced the severity of the disease more than acyclovir, as well as the duration of the herpetic lesions, when compared to mock-treated animals, with the D. antarctica extract performing best. Taken together, these findings suggest that these algae extracts may be potential phytotherapeutics against HSVs and may be useful for the treatment and reduction of common herpetic manifestations in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA