Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
J Phys Chem A ; 128(9): 1665-1684, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38383985

RESUMO

The oxidation of gas-phase exo-tetrahydrodicyclopentadiene (JP-10, C10H16) over aluminum nanoparticles (AlNP) has been explored between a temperature range of 300 and 1250 K with a novel chemical microreactor. The results are compared with those obtained from chemical microreactor studies of helium-seeded JP-10 and of helium-oxygen-seeded JP-10 without AlNP to gauge the effects of molecular oxygen and AlNP, respectively. Vacuum ultraviolet (VUV) photoionization mass spectrometry reveals that oxidative decomposition of JP-10 in the presence of AlNP is lowered by 350 and 200 K with and without AlNP, respectively, in comparison with pyrolysis of the fuel. Overall, 63 nascent gas-phase products are identified through photoionization efficiency (PIE) curves; these can be categorized as oxygenated molecules and their radicals as well as closed-shell hydrocarbons along with hydrocarbon radicals. Quantitative branching ratios of the products reveal diminishing yields of oxidized species and enhanced branching ratios of hydrocarbon species with the increase in temperature. While in the low-temperature regime (300-1000 K), AlNP solely acts as an efficient heat transfer medium, in the higher-temperature regime (1000-1250 K), chemical reactivity is triggered, facilitating the primary decomposition of the parent JP-10 molecule. This enhanced reactivity of AlNP could plausibly be linked to the exposed reactive surface of the aluminum (Al) core generated upon the rupture of the alumina shell material above the melting point of the metal (Al).

2.
J Phys Chem A ; 128(18): 3613-3624, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38662507

RESUMO

High-energy-density aluminum nanoparticles (AlNPs) upon thermal annealing followed by superquenching result in elevated stress levels in the metallic core and reduced surface energy at the core-shell interface. Isomer-selective vacuum ultraviolet-based photoionization mass spectrometry coupled to a high-temperature chemical microreactor reveals that these stress-altered AlNPs (SA-AlNPs) exhibit distinctive temperature-dependent reactivities toward catalytic decomposition of the hydrocarbon jet fuel exo-tetrahydrodicyclopentadiene (JP-10, C10H16) compared to untreated AlNPs (UN-AlNPs). SA-AlNPs show a delayed initiation of the decomposition for JP-10 by 200 K relative to the UN-AlNPs; however, the full decomposition is achieved at a 100 K lower temperature. Furthermore, there are fewer oxygenated products that are generated from the alumina surface-induced heterogeneous oxidation process and a larger fraction of closed- and open-shell hydrocarbons. Chemical insight bridging the reactivity order of SA-AlNPs at low and high temperatures, simultaneously, is obtained via a detailed examination of the product branching ratios obtained in this study.

3.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591680

RESUMO

In the interstellar medium, diols and other prebiotic molecules adsorb onto icy mantles surrounding dust grains. Water in the ice may affect the reactivity and photoionization of these diols. Ethylene glycol (EG), 1,2-propylene glycol, and 1,3-propylene glycol clusters with water clusters were used as a proxy to study these interactions. The diol-water clusters were generated in a continuous supersonic molecular beam, photoionized by synchrotron-based vacuum ultraviolet light from the Advanced Light Source, and subsequently detected by reflectron time-of-flight mass spectrometry. The appearance energies for the detected clusters were determined from the mass spectra, collected at increasing photon energy. Clusters of both diol fragments and unfragmented diols with water were detected. The lowest energy geometry optimized conformers for the observed EG-water clusters and EG fragment-water clusters have been visualized using density functional theory (DFT), providing insight into hydrogen bonding networks and how these affect fragmentation and appearance energy. As the number of water molecules clustered around EG fragments (m/z 31 and 32) increased, the appearance energy for the cluster decreased, indicating a stabilization by water. This trend was supported by DFT calculations. Fragment clusters from 1,2-propylene glycol exhibited a similar trend, but with a smaller energy decrease, and no trend was observed from 1,3-propylene glycol. We discuss and suggest that the reactivity and photoionization of diols in the presence of water depend on the size of the diol, the location of the hydroxyl group, and the number of waters clustered around the diol.

4.
J Am Chem Soc ; 145(5): 3084-3091, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36701838

RESUMO

The gas-phase reaction between the 1-indenyl (C9H7•) radical and the cyclopentadienyl (C5H5•) radical has been investigated for the first time using synchrotron-based mass spectrometry coupled with a pyrolytic reactor. Soft photoionization with tunable vacuum ultraviolet photons afforded for the isomer-selective identification of the production of phenanthrene, anthracene, and benzofulvalene (C14H10). The classical theory prevalent in the literature proposing that radicals combine only at their specific radical centers is challenged by our discovery of an unusual reaction pathway that involves a barrierless combination of a resonantly stabilized hydrocarbon radical with an aromatic radical at the carbon atom adjacent to the traditional C1 radical center; this unconventional addition is followed by substantial isomerization into phenanthrene and anthracene via a category of exotic spiroaromatic intermediates. This result leads to a deeper understanding of the evolution of the cosmic carbon budget and provides new methodologies for the bottom-up synthesis of unique spiroaromatics that may be relevant for the synthesis of more complex aromatic carbon skeletons in deep space.

5.
J Phys Chem A ; 127(29): 5999-6011, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37441795

RESUMO

The stability and distributions of small water clusters generated in a supersonic beam expansion are interrogated by tunable vacuum ultraviolet (VUV) radiation generated at a synchrotron. Time-of-flight mass spectrometry reveals enhanced population of various protonated water clusters (H+(H2O)n) based upon ionization energy and photoionization distance from source, suggesting there are "magic" numbers below the traditional n = 21 that predominates in the literature. These intensity distributions suggest that VUV threshold photoionization (11.0-11.5 eV) of neutral water clusters close to the nozzle exit leads to a different nonequilibrium state compared to a skimmed molecular beam. This results in the appearance of a new magic number at 14. Metadynamics conformer searches coupled with modern density functional calculations are used to identify the global minimum energy structures of protonated water clusters between n = 2 and 21, as well as the manifold of low-lying metastable minima. New lowest energy structures are reported for the cases of n = 5, 6, 11, 12, 16, and 18, and special stability is identified by several measures. These theoretical results are in agreement with the experiments performed in this work in that n = 14 is shown to exhibit additional stability, based on the computed second-order stabilization energy relative to most cluster sizes, though not to the extent of the well-known n = 21 cluster. Other cluster sizes that show some additional energetic stability are n = 7, 9, 12, 17, and 19. To gain insight into the balance between ion-water and water-water interactions as a function of the cluster size, an analysis of the effective two-body interactions (which sum exactly to the total interaction energy) was performed. This analysis reveals a crossover as a function of cluster size between a water-hydronium-dominated regime for small clusters and a water-water-dominated regime for larger clusters around n = 17.

6.
Angew Chem Int Ed Engl ; 62(6): e202216972, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524679

RESUMO

The simplest polycyclic aromatic hydrocarbon (PAH) carrying a five-membered ring-9H-fluorene (C13 H10 )-is produced isomer-specifically in the gas phase by reacting benzyl (C7 H7 ⋅) with phenyl (C6 H5 ⋅) radicals in a pyrolytic reactor coupled with single photon ionization mass spectrometry. The unconventional mechanism of reaction is supported by theoretical calculations, which first produces diphenylmethane and unexpected 1-(6-methylenecyclohexa-2,4-dienyl)benzene intermediates (C13 H12 ) accessed via addition of the phenyl radical to the ortho position of the benzyl radical. These findings offer convincing evidence for molecular mass growth processes defying conventional wisdom that radical-radical reactions are initiated through recombination at their radical centers. The structure of 9H-fluorene acts as a molecular building block for complex curved nanostructures like fullerenes and nanobowls providing fundamental insights into the hydrocarbon evolution in high temperature settings.

7.
Phys Chem Chem Phys ; 24(47): 28788-28793, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36382773

RESUMO

The confinement of water molecules is vital in fields from biology to nanotechnology. The conditions allowing confinement in small finite polycyclic aromatic hydrocarbons (PAHs) are unclear, yet are crucial for understanding confinement in larger systems. Here, we report a computational study of water cluster confinement within PAHs dimers. Our results serve as a model for larger carbon allotropes and for understanding molecular interactions in confined systems. We identified size and structural motifs allowing confinement and demonstrated the motifs in various PAHs systems. We show that optimal OH⋯π interactions between water clusters and the PAH dimer permit optimal confinement to occur. However, the lack of such interactions leads to the formation of CH⋯O interactions, resulting in less ideal confinement. Confinement of layered clusters is also possible, provided that the optimal OH⋯π interactions are conserved.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Água , Nanotecnologia
8.
Phys Chem Chem Phys ; 24(38): 23106-23118, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35975620

RESUMO

Water-cluster interactions with polycyclic aromatic hydrocarbons (PAHs) are of paramount interest in many chemical and biological processes. We report a study of anthracene monomers and dimers with water (up to four)-cluster systems utilizing molecular beam vacuum-UV photoionization mass spectrometry and density functional calculations. Structural loss in photoionization efficiency curves when adding water indicates that various isomers are generated, while theory indicates only a slight shift in energy in photoionization states of different isomers. Calculations reveal that the energetic tendency of water is to remain clustered and not to disperse around the PAH. Theoretically, we observe water confinement exclusively in the case of four water clusters and only when the anthracenes are in a cross configuration due to optimal OH⋯π interactions, indicating dependence on the size and structure of the PAH. Furthermore theory sheds light on the structural changes that occur in water upon ionization of anthracene, due to the optimal interactions of the resulting hole and water hydrogen atoms.

9.
Phys Chem Chem Phys ; 24(42): 26102-26110, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36274571

RESUMO

Nucleation and crystallization arising from liquid to solid phase are involved in a multitude of processes in fields ranging from materials science to biology. Controlling the thermodynamics and kinetics of growth is advantageous to help tune the formation of complex morphologies. Here, we harness wide-angle X-ray scattering and vibrational spectroscopy to elucidate the mechanism for crystallization and growth of the metal-organic framework Co-MOF-74 within microscopic volumes enclosed in a capillary and an attenuated total reflection microchip reactor. The experiments reveal molecular and structural details of the growth processes, while the results of plane wave density functional calculations allow identification of lattice and linker modes in the formed crystals. Synthesis of the metal-organic framework with microscopic volumes leads to monodisperse and micron-sized crystals, in contrast to those typically observed under bulk reaction conditions. Reduction in the volume of reagents within the microchip reactor was found to accelerate the reaction rate. The coupling of spectroscopy with scattering to probe reactions in microscopic volumes promises to be a useful tool in the synthetic chemist's kit to understand chemical bonding and has potential in designing complex materials.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Raios X , Cristalização , Termodinâmica , Espectroscopia de Ressonância Magnética
10.
Phys Chem Chem Phys ; 24(41): 25077-25087, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36056687

RESUMO

The molecular origins of homochirality on Earth is not understood well, particularly how enantiomerically enriched molecules of astrobiological significance like sugars and amino acids might have been synthesized on icy grains in space preceding their delivery to Earth. Polycyclic aromatic hydrocarbons (PAHs) identified in carbonaceous chondrites could have been processed in molecular clouds by circularly polarized light prior to the depletion of enantiomerically enriched helicenes onto carbonaceous grains resulting in chiral islands. However, the fundamental low temperature reaction mechanisms leading to racemic helicenes are still unknown. Here, by exploiting synchrotron based molecular beam photoionization mass spectrometry combined with electronic structure calculations, we provide compelling testimony on barrierless, low temperature pathways leading to racemates of [5] and [6]helicene. Astrochemical modeling advocates that gas-phase reactions in molecular clouds lead to racemates of helicenes suggesting a pathway for future astronomical observation and providing a fundamental understanding for the origin of homochirality on early Earth.


Assuntos
Meteoroides , Aminoácidos/química , Açúcares , Estereoisomerismo
11.
J Phys Chem A ; 126(10): 1701-1710, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35254809

RESUMO

Polyol-water clusters provide a template to probe ionization and solvation processes of paramount interest in atmospheric and interstellar chemistry. We generate glycerol water clusters in a continuous supersonic jet expansion and interrogate the neutral species with synchrotron-based tunable vacuum ultraviolet photoionization mass spectrometry. A series of glycerol fragments (m/z 44, 61, 62, and 74) clustered with water are observed. A judicious combination of backing pressure, nozzle temperature, and water vapor pressure allows for tuning the mol % of glycerol. The recorded appearance energies of the water cluster series m/z 62 and 74 are similar to that observed in pure glycerol, while the m/z 61 series shows a dependence on cluster composition. Furthermore, this series also tracks the water concentration of the beam. Theoretical calculations on neutral and ionized clusters visualize the hydrogen bond network in these water clusters and provide an assessment of the number of glycerol-glycerol, glycerol-water, and water-water hydrogen bonds in the cluster, as well as their interaction energies. This method of bond counting and interaction energy assessment explains the changes in the mass spectrum as a function of mol % and offers a glimpse of the disruption of the hydrogen bond network in glycerol-water clusters. The calculations also reveal interesting barrierless chemical processes in photoionized glycerol water clusters that are either activated or do not occur without the presence of water. Examples include spontaneous intramolecular proton transfer within glycerol to form a distonic ion, nonactivated breaking of a C-C bond, and spontaneous proton transfer from glycerol to water. These results appear relevant to radiation-induced chemical processing of alcohol-water ices in the interstellar medium.


Assuntos
Glicerol , Prótons , Gases , Ligação de Hidrogênio , Vácuo
12.
Phys Chem Chem Phys ; 23(34): 18495-18505, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612388

RESUMO

Despite remarkable progress toward the understanding of the formation pathways leading to polycyclic aromatic hydrocarbons (PAHs) in combustion systems and in deep space, the complex reaction pathways leading to nitrogen-substituted PAHs (NPAHs) at low temperatures of molecular clouds and hydrocarbon-rich, nitrogen-containing atmospheres of planets and their moons like Titan have remained largely obscure. Here, we demonstrate through laboratory experiments and computations that the simplest prototype of NPAHs - quinoline and isoquinoline (C9H7N) - can be synthesized via rapid and de-facto barrier-less reactions involving o-, m- and p-pyridinyl radicals (C5H4N˙) with vinylacetylene (C4H4) under low-temperature conditions.

13.
Phys Chem Chem Phys ; 23(10): 5740-5749, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33595573

RESUMO

Fullerenes (C60, C70) detected in planetary nebulae and carbonaceous chondrites have been implicated to play a key role in the astrochemical evolution of the interstellar medium. However, the formation mechanism of even their simplest molecular building block-the corannulene molecule (C20H10)-has remained elusive. Here we demonstrate via a combined molecular beams and ab initio investigation that corannulene can be synthesized in the gas phase through the reactions of 7-fluoranthenyl (C16H9˙) and benzo[ghi]fluoranthen-5-yl (C18H9˙) radicals with acetylene (C2H2) mimicking conditions in carbon-rich circumstellar envelopes. This reaction sequence reveals a reaction class in which a polycyclic aromatic hydrocarbon (PAH) radical undergoes ring expansion while simultaneously forming an out-of-plane carbon backbone central to 3D nanostructures such as buckybowls and buckyballs. These fundamental reaction mechanisms are critical in facilitating an intimate understanding of the origin and evolution of the molecular universe and, in particular, of carbon in our galaxy.

14.
Phys Chem Chem Phys ; 22(5): 2713-2737, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31960853

RESUMO

Tunable synchrotron radiation provides a universal yet selective scalpel to decipher molecular information in complex chemical systems when coupled to mass spectrometry and X-ray spectroscopy. At the Chemical Dynamics Beamline, the radiation emanating from the Advanced Light Source at Berkeley has been utilized by physical chemists and chemical physicists to probe chemical reactivity, energetics and spectroscopy for over two decades. Emerging themes are the study of molecular growth mechanisms, solvation, electronic structure and reactivity in clusters, complexes and nanoparticles. The ion-induced and neutral growth mechanisms in methanol and acetylene clusters are revealed by vacuum ultraviolet (VUV) single photon ionization mass spectrometry. The photoionization dynamics of glycerol show signatures of strong ionic hydrogen bonds, non-covalent interactions are explored in naphthalene water clusters, proton transfer pathways are revealed in acetaldehyde water clusters, and exciton charge transfer is probed in argon water clusters. X-ray spectroscopy provides a local probe of a sample's electronic structure with elemental and site-specificity and is thus ideally suited for probing solvation. Velocity map imaging X-ray photoelectron spectroscopy coupled to nanoparticle beams that allows for the visualization of dynamic processes in solvation and molecular growth processes is described. This technique is used to probe reactivity in aerosol chemistry, obtain phase and pH dependent information on aqueous nanoparticles and electron scattering cross-sections from hydrocarbon nanoparticles. We describe future opportunities in probing elusive radicals such as the cyclic 3,5-dehydroxyphenyl radical cation and excited states in water clusters formed in VUV photoionization, explore reactivity in confined spaces via X-ray spectroscopy and elucidate time dynamics with laser-synchrotron pump probe experiments.

15.
Phys Chem Chem Phys ; 22(25): 14284-14292, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32555897

RESUMO

Electronic excitation and concomitant energy transfer leading to Penning ionization in argon-acetylene clusters generated in a supersonic expansion are investigated with synchrotron-based photoionization mass spectrometry and electronic structure calculations. Spectral features in the photoionization efficiency of the mixed argon-acetylene clusters reveal a blue shift from the 2P1/2 and 2P3/2 excited states of atomic argon. Analysis of this feature suggests that excited states of argon clusters transfer energy to acetylene, resulting in its ionization and successive evaporation of argon. Theoretically calculated Arn (n = 2-6) cluster spectra are in excellent agreement with experimental observations, and provide insight into the structure and ionization dynamics of the clusters. A comparison between argon-acetylene and argon-water clusters reveals that argon solvates water better, allowing for higher-order excitons and Rydberg states to be populated. These results are explained by theoretical calculations of respective binding energies and structures.

16.
Phys Chem Chem Phys ; 22(26): 14449-14453, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32582899

RESUMO

We present synchrotron-based mass spectrometry to probe products formed in a lithium sulphide electrolyte. In operando analysis was carried out at two different potentials in a vacuum compatible microfluidic electrochemical cell. Mass spectral observations show that the charged electrolyte formed sulphur clusters under dynamic conditions, demonstrating electrolyte electron shuttling.

17.
Phys Chem Chem Phys ; 22(27): 15381-15388, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32598423

RESUMO

For the last few decades, the Hydrogen-Abstraction/aCetylene-Addition (HACA) mechanism has been fundamental in aiding our understanding of the source of polycyclic aromatic hydrocarbons (PAHs) in combustion processes and in circumstellar envelopes of carbon rich stars. However, the reaction mechanisms driving high temperature molecular mass growth beyond triphenylene (C18H12) along with the link between PAHs and graphene-type nanostructures as identified in carbonaceous meteorites such as in Murchison and Allende has remained elusive. By exploring the reaction of the 1-naphthyl radical (C10H7˙) with methylacetylene (CH3CCH) and allene (H2CCCH2) under conditions prevalent in carbon-rich circumstellar environments and combustion systems, we provide compelling evidence on a facile formation of 1H-phenalene (C13H10) - the central molecular building block of graphene-type nanostructures. Beyond PAHs, molecular mass growth processes from 1H-phenalene via ring-annulation through C3 molecular building blocks may ultimately lead to two-dimensional structures such as graphene nano flakes and after condensation of multiple layers to graphitized carbon. These fundamental reaction mechanisms are of crucial significance to facilitate an understanding of the origin and chemical evolution of carbon in our Galaxy.

18.
Phys Chem Chem Phys ; 22(39): 22493-22500, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32996974

RESUMO

The tricyclic polycyclic aromatic hydrocarbons (PAHs) 3H-cyclopenta[a]naphthalene (C13H10), 1H-cyclopenta[b]naphthalene (C13H10) and 1H-cyclopenta[a]naphthalene (C13H10) along with their indene-based bicyclic isomers (E)-5-(but-1-en-3-yn-1-yl)-1H-indene, (E)-6-(but-1-en-3-yn-1-yl)-1H-indene, 5-(but-3-ene-1-yn-1-yl)-1H-in-dene, and 6-(but-3-ene-1-yn-1-yl)-1H-indene were formed via a "directed synthesis" in a high-temperature chemical micro reactor at the temperature of 1300 ± 10 K through the reactions of the 5- and 6-indenyl radicals (C9H7˙) with vinylacetylene (C4H4). The isomer distributions were probed utilizing tunable vacuum ultraviolet light by recording the photoionization efficiency curves at mass-to-charge of m/z = 166 (C13H10) and 167 (13CC12H10) of the products in a supersonic molecular beam. The underlying reaction mechanisms involve the initial formation of van-der-Waals complexes followed by addition of the 5- and 6-indenyl radicals to vinylacetylene via submerged barriers, followed by isomerization (hydrogen shifts, ring closures), and termination via atomic hydrogen elimination accompanied by aromatization. All the barriers involved in the formation of 3H-cyclopenta[a]naphthalene, 1H-cyclopenta[b]naphthalene and 1H-cyclopenta[a]naphthalene are submerged with respect to the reactants indicating that the mechanisms are in fact barrierless, potentially forming PAHs via the hydrogen abstraction - vinylacetylene addition (HAVA) pathway in the cold molecular clouds such as Taurus Molecular Cloud-1 (TMC-1) at temperatures as low as 10 K.

19.
Proc Natl Acad Sci U S A ; 114(21): E4125-E4133, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484019

RESUMO

The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C2H2) n+, just like ionized acetylene clusters. The fragmentation products result from reactive ion-molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C4H4+ and C6H6+ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C2H2)n+ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C6H6+ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.

20.
Angew Chem Int Ed Engl ; 59(28): 11334-11338, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32266773

RESUMO

A representative, low-temperature gas-phase reaction mechanism synthesizing polyacenes via ring annulation exemplified by the formation of pentacene (C22 H14 ) along with its benzo[a]tetracene isomer (C22 H14 ) is unraveled by probing the elementary reaction of the 2-tetracenyl radical (C18 H11 . ) with vinylacetylene (C4 H4 ). The pathway to pentacene-a prototype polyacene and a fundamental molecular building block in graphenes, fullerenes, and carbon nanotubes-is facilitated by a barrierless, vinylacetylene mediated gas-phase process thus disputing conventional hypotheses that synthesis of polycyclic aromatic hydrocarbons (PAHs) solely proceeds at elevated temperatures. This low-temperature pathway can launch isomer-selective routes to aromatic structures through submerged reaction barriers, resonantly stabilized free-radical intermediates, and methodical ring annulation in deep space eventually changing our perception about the chemistry of carbon in our universe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA