Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 139(4): 780-90, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19914170

RESUMO

Mature HIV-1 particles contain conical-shaped capsids that enclose the viral RNA genome and perform essential functions in the virus life cycle. Previous structural analysis of two- and three-dimensional arrays of the capsid protein (CA) hexamer revealed three interfaces. Here, we present a cryoEM study of a tubular assembly of CA and a high-resolution NMR structure of the CA C-terminal domain (CTD) dimer. In the solution dimer structure, the monomers exhibit different relative orientations compared to previous X-ray structures. The solution structure fits well into the EM density map, suggesting that the dimer interface is retained in the assembled CA. We also identified a CTD-CTD interface at the local three-fold axis in the cryoEM map and confirmed its functional importance by mutagenesis. In the tubular assembly, CA intermolecular interfaces vary slightly, accommodating the asymmetry present in tubes. This provides the necessary plasticity to allow for controlled virus capsid dis/assembly.


Assuntos
Proteínas do Capsídeo/química , HIV-1/química , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , HIV-1/metabolismo , Ressonância Magnética Nuclear Biomolecular , RNA Viral/metabolismo , Montagem de Vírus
2.
PLoS Biol ; 18(12): e3001015, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33332391

RESUMO

Reverse transcription, an essential event in the HIV-1 life cycle, requires deoxynucleotide triphosphates (dNTPs) to fuel DNA synthesis, thus requiring penetration of dNTPs into the viral capsid. The central cavity of the capsid protein (CA) hexamer reveals itself as a plausible channel that allows the passage of dNTPs into assembled capsids. Nevertheless, the molecular mechanism of nucleotide import into the capsid remains unknown. Employing all-atom molecular dynamics (MD) simulations, we established that cooperative binding between nucleotides inside a CA hexamer cavity results in energetically favorable conditions for passive translocation of dNTPs into the HIV-1 capsid. Furthermore, binding of the host cell metabolite inositol hexakisphosphate (IP6) enhances dNTP import, while binding of synthesized molecules like benzenehexacarboxylic acid (BHC) inhibits it. The enhancing effect on reverse transcription by IP6 and the consequences of interactions between CA and nucleotides were corroborated using atomic force microscopy, transmission electron microscopy, and virological assays. Collectively, our results provide an atomistic description of the permeability of the HIV-1 capsid to small molecules and reveal a novel mechanism for the involvement of metabolites in HIV-1 capsid stabilization, nucleotide import, and reverse transcription.


Assuntos
Capsídeo/metabolismo , HIV-1/metabolismo , Replicação Viral/fisiologia , Capsídeo/química , Capsídeo/fisiologia , Proteínas do Capsídeo/genética , Replicação do DNA/fisiologia , DNA Viral/metabolismo , Células HEK293 , HIV-1/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Simulação de Dinâmica Molecular , Nucleotídeos/metabolismo , Permeabilidade , Ácido Fítico/análise , Ácido Fítico/metabolismo , Vírion/genética , Montagem de Vírus/fisiologia , Replicação Viral/genética
3.
J Am Chem Soc ; 144(24): 10809-10816, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35574633

RESUMO

Fluorosubstituted tryptophans serve as valuable probes for fluorescence and nuclear magnetic resonance (NMR) studies of proteins. Here, we describe an unusual photoreactivity introduced by replacing the single tryptophan in cyclophilin A with 7-fluoro-tryptophan. UV exposure at 282 nm defluorinates 7-fluoro-tryptophan and crosslinks it to a nearby phenylalanine, generating a bright fluorophore. The crosslink-containing fluorescent protein possesses a large quantum yield of ∼0.40 with a fluorescence lifetime of 2.38 ns. The chemical nature of the crosslink and the three-dimensional protein structure were determined by mass spectrometry and NMR spectroscopy. To the best of our knowledge, this is the first report of a Phe-Trp crosslink in a protein. Our finding may break new ground for developing novel fluorescence probes and for devising new strategies to exploit aromatic crosslinks in proteins.


Assuntos
Fenilalanina , Triptofano , Fenilalanina/química , Espectrometria de Fluorescência , Triptofano/química
4.
J Gastroenterol Hepatol ; 37(7): 1342-1348, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35362155

RESUMO

BACKGROUND AND AIM: Endoscopic retrograde cholangiopancreatography (ERCP) requires radiation. This study aimed to assess the clinical factors influencing radiation exposure and devise a scoring model for predicting high-dose radiation exposure. METHODS: Endoscopic retrograde cholangiopancreatography cases recorded between 2016 and 2019 in a single tertiary teaching hospital were retrospectively reviewed. A scoring model was created by bootstrap method in a derivation cohort (2016-2018) and was assessed in a validation cohort (2019). RESULTS: Out of 4223 ERCPs, 2983 and 1240 cases were included in the derivation and validation cohorts, respectively. In the derivation cohort, 746 cases (top 25%) comprised the high-dose exposure group, and 2237 cases (bottom 75%) comprised the low-dose exposure group. Nine clinical parameters associated with high-dose exposure were male, pancreatic sphincterotomy, balloon dilatation, biliary or pancreatic drainage, procedures with contrast dye, endoscopist, in-hospital ERCP, and spot image. Stone removal was included by bootstrap analysis. As presented in a nomogram, the weight score of each variable was as follows: male, 1; pancreatic sphincterotomy, 3; balloon dilatation, 7; stone removal, 3; biliary or pancreatic drainage, 5; procedures with contrast dye, 1; endoscopist B, 4; endoscopist C, 5; in-hospital procedure, 3; and spot image, 3. A total score ≥ 15 suggested a high-dose radiation exposure. The sensitivity and specificity of the model for high-dose exposure were 0.562 and 0.813, respectively. In the validation cohort, the model showed reasonable predictability. CONCLUSIONS: Various factors were associated with radiation exposure. The simple scoring system in this study could guide endoscopists in predicting the risk of high-dose radiation exposure.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Exposição à Radiação , Cateterismo , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Colangiopancreatografia Retrógrada Endoscópica/métodos , Drenagem , Feminino , Humanos , Masculino , Exposição à Radiação/efeitos adversos , Estudos Retrospectivos , Esfinterotomia Endoscópica/métodos
5.
Proc Natl Acad Sci U S A ; 116(19): 9333-9339, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019074

RESUMO

Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse transcription of retroviruses in macrophages by maintaining dNTP pools at low levels, Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. However, the mechanism behind dGTP selectivity is unclear. Here we present the free-, ligand (dGTP)- and inhibitor (GTP)-bound structures of hexameric Ec-dGTPase, including an X-ray free-electron laser structure of the free Ec-dGTPase enzyme to 3.2 Å. To obtain this structure, we developed a method that applied UV-fluorescence microscopy, video analysis, and highly automated goniometer-based instrumentation to map and rapidly position individual crystals randomly located on fixed target holders, resulting in the highest indexing rates observed for a serial femtosecond crystallography experiment. Our structures show a highly dynamic active site where conformational changes are coupled to substrate (dGTP), but not inhibitor binding, since GTP locks dGTPase in its apo- form. Moreover, despite no sequence homology, Ec-dGTPase and SAMHD1 share similar active-site and HD motif architectures; however, Ec-dGTPase residues at the end of the substrate-binding pocket mimic Watson-Crick interactions providing guanine base specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP bases, abolishing nucleotide-type discrimination. Furthermore, the structures shed light on the mechanism by which long distance binding (25 Å) of single-stranded DNA in an allosteric site primes the active site by conformationally "opening" a tyrosine gate allowing enhanced substrate binding.


Assuntos
Nucleotídeos de Desoxiguanina/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , GTP Fosfo-Hidrolases/química , Sítio Alostérico , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Nucleotídeos de Desoxiguanina/química , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Modelos Moleculares , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Especificidade por Substrato
6.
Virol J ; 18(1): 48, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648539

RESUMO

BACKGROUND: Vpr is a virion-associated protein that is encoded by lentiviruses and serves to counteract intrinsic immunity factors that restrict infection. HIV-1 Vpr mediates proteasome-dependent degradation of several DNA repair/modification proteins. Mechanistically, Vpr directly recruits cellular targets onto DCAF1, a substrate receptor of Cullin 4 RING E3 ubiquitin ligase (CRL4) for poly-ubiquitination. Further, Vpr can mediate poly-ubiquitination of DCAF1-interacting proteins by the CRL4. Because Vpr-mediated degradation of its known targets can not explain the primary cell-cycle arrest phenotype that Vpr expression induces, we surveyed the literature for DNA-repair-associated proteins that interact with the CRL4-DCAF1. One such protein is SIRT7, a deacetylase of histone 3 that belongs to the Sirtuin family and regulates a wide range of cellular processes. We wondered whether Vpr can mediate degradation of SIRT7 via the CRL4-DCAF1. METHODS: HEK293T cells were transfected with cocktails of plasmids expressing DCAF1, DDB1, SIRT7 and Vpr. Ectopic and endogeneous levels of SIRT7 were monitered by immunoblotting and protein-protein interactions were assessed by immunoprecipitation. For in vitro reconstitution assays, recombinant CRL4-DCAF1-Vpr complexes and SIRT7 were prepared and poly-ubiqutination of SIRT7 was monitored with immunoblotting. RESULTS: We demonstrate SIRT7 polyubiquitination and degradation upon Vpr expression. Specifically, SIRT7 is shown to interact with the CRL4-DCAF1 complex, and expression of Vpr in HEK293T cells results in SIRT7 degradation, which is partially rescued by CRL inhibitor MNL4924 and proteasome inhibitor MG132. Further, in vitro reconstitution assays show that Vpr induces poly-ubiquitination of SIRT7 by the CRL4-DCAF1. Importantly, we find that Vpr from several different HIV-1 strains, but not HIV-2 strains, mediates SIRT7 poly-ubiquitination in the reconstitution assay and degradation in cells. Finally, we show that SIRT7 degradation by Vpr is independent of the known, distinctive phenotype of Vpr-induced cell cycle arrest at the G2 phase, CONCLUSIONS: Targeting histone deacetylase SIRT7 for degradation is a conserved feature of HIV-1 Vpr. Altogether, our findings reveal that HIV-1 Vpr mediates down-regulation of SIRT7 by a mechanism that does not involve novel target recruitment to the CRL4-DCAF1 but instead involves regulation of the E3 ligase activity.


Assuntos
Proteínas Serina-Treonina Quinases , Receptores de Interleucina-17 , Sirtuínas , Ubiquitina-Proteína Ligases , Produtos do Gene vpr do Vírus da Imunodeficiência Humana , Células HEK293 , HIV-1 , Humanos , Ubiquitina-Proteína Ligases/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
7.
Proc Natl Acad Sci U S A ; 115(45): 11519-11524, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30333189

RESUMO

The host factor protein TRIM5α plays an important role in restricting the host range of HIV-1, interfering with the integrity of the HIV-1 capsid. TRIM5 triggers an antiviral innate immune response by functioning as a capsid pattern recognition receptor, although the precise mechanism by which the restriction is imposed is not completely understood. Here we used an integrated magic-angle spinning nuclear magnetic resonance and molecular dynamics simulations approach to characterize, at atomic resolution, the dynamics of the capsid's hexameric and pentameric building blocks, and the interactions with TRIM5α in the assembled capsid. Our data indicate that assemblies in the presence of the pentameric subunits are more rigid on the microsecond to millisecond timescales than tubes containing only hexamers. This feature may be of key importance for controlling the capsid's morphology and stability. In addition, we found that TRIM5α binding to capsid induces global rigidification and perturbs key intermolecular interfaces essential for higher-order capsid assembly, with structural and dynamic changes occurring throughout the entire CA polypeptide chain in the assembly, rather than being limited to a specific protein-protein interface. Taken together, our results suggest that TRIM5α uses several mechanisms to destabilize the capsid lattice, ultimately inducing its disassembly. Our findings add to a growing body of work indicating that dynamic allostery plays a pivotal role in capsid assembly and HIV-1 infectivity.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , HIV-1/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , HIV-1/genética , HIV-1/ultraestrutura , Humanos , Macaca mulatta , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ubiquitina-Proteína Ligases
8.
Nucleic Acids Res ; 46(7): e40, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361040

RESUMO

Scalable and cost-effective production of error-free DNA is critical to meet the increased demand for such DNA in the field of biological science. Methods based on 'Dial-out PCR' have enabled the high-throughput error-free DNA synthesis from a microarray-synthesized DNA pool by labeling with retrieval PCR tags, and retrieving error-free DNA of which the sequence is identified via next generation sequencing (NGS). However, most of the retrieved products contain byproducts due to background amplification of redundantly labeled DNAs. Here, we present a highly selective retrieval method of desired DNA from a pool of millions of DNA clones from NGS platforms. Our strategy is based on replicating entire sequence-verified DNA molecules from NGS plates to obtain population-controlled DNA pool. Using the NGS-replica pool, we could perform improved and selective retrieval of desired DNA from the replicated DNA pool compared to other dial-out PCR based methods. To evaluate the method, we tested this strategy by using 454, Illumina, and Ion Torrent platforms for producing NGS-replica pool. As a result, we observed a highly selective retrieval yield of over 95%. We anticipate that applications based on this method will enable the preparation of high-fidelity sequenced DNA from heterogeneous collections of DNA molecules.


Assuntos
DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase/métodos , Replicação do DNA/genética , Humanos , Análise de Sequência de DNA/métodos
9.
Nature ; 497(7451): 643-6, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23719463

RESUMO

Retroviral capsid proteins are conserved structurally but assemble into different morphologies. The mature human immunodeficiency virus-1 (HIV-1) capsid is best described by a 'fullerene cone' model, in which hexamers of the capsid protein are linked to form a hexagonal surface lattice that is closed by incorporating 12 capsid-protein pentamers. HIV-1 capsid protein contains an amino-terminal domain (NTD) comprising seven α-helices and a ß-hairpin, a carboxy-terminal domain (CTD) comprising four α-helices, and a flexible linker with a 310-helix connecting the two structural domains. Structures of the capsid-protein assembly units have been determined by X-ray crystallography; however, structural information regarding the assembled capsid and the contacts between the assembly units is incomplete. Here we report the cryo-electron microscopy structure of a tubular HIV-1 capsid-protein assembly at 8 Å resolution and the three-dimensional structure of a native HIV-1 core by cryo-electron tomography. The structure of the tubular assembly shows, at the three-fold interface, a three-helix bundle with critical hydrophobic interactions. Mutagenesis studies confirm that hydrophobic residues in the centre of the three-helix bundle are crucial for capsid assembly and stability, and for viral infectivity. The cryo-electron-microscopy structures enable modelling by large-scale molecular dynamics simulation, resulting in all-atom models for the hexamer-of-hexamer and pentamer-of-hexamer elements as well as for the entire capsid. Incorporation of pentamers results in closer trimer contacts and induces acute surface curvature. The complete atomic HIV-1 capsid model provides a platform for further studies of capsid function and for targeted pharmacological intervention.


Assuntos
Capsídeo/química , Capsídeo/ultraestrutura , HIV-1/química , HIV-1/ultraestrutura , Simulação de Dinâmica Molecular , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
10.
Proc Natl Acad Sci U S A ; 113(30): E4311-9, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27407148

RESUMO

DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.


Assuntos
Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , DNA/química , DNA/genética , DNA/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Recombinação Homóloga , Humanos , Células K562 , Conformação de Ácido Nucleico , Interferência de RNA , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , DNA Polimerase iota
11.
J Biol Chem ; 292(51): 21117-21127, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29079575

RESUMO

The viral protein R (Vpr) is an accessory virulence factor of HIV-1 that facilitates infection in immune cells. Cellular functions of Vpr are tied to its interaction with DCAF1, a substrate receptor component of the CRL4 E3 ubiquitin ligase. Recent proteomic approaches suggested that Vpr degrades helicase-like transcription factor (HLTF) DNA helicase in a proteasome-dependent manner by redirecting the CRL4-DCAF1 E3 ligase. However, the precise molecular mechanism of Vpr-dependent HLTF depletion is not known. Here, using in vitro reconstitution assays, we show that Vpr mediates polyubiquitination of HLTF, by directly loading it onto the C-terminal WD40 domain of DCAF1 in complex with the CRL4 E3 ubiquitin ligase. Mutational analyses suggest that Vpr interacts with DNA-binding residues in the N-terminal HIRAN domain of HLTF in a manner similar to the recruitment of another target, uracil DNA glycosylase (UNG2), to the CRL4-DCAF1 E3 by Vpr. Strikingly, Vpr also engages a second, adjacent region, which connects the HIRAN and ATPase/helicase domains. Thus, our findings reveal that Vpr utilizes common as well as distinctive interfaces to recruit multiple postreplication DNA repair proteins to the CRL4-DCAF1 E3 ligase for ubiquitin-dependent proteasomal degradation.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Deleção de Genes , Células HEK293 , Humanos , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Serina-Treonina Quinases , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Repetições WD40 , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
12.
Proc Natl Acad Sci U S A ; 112(47): 14617-22, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26553990

RESUMO

Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactions with the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of conformational dynamics on the nanosecond to millisecond timescale in HIV-1 CA assemblies in the escape from CypA dependence, by magic-angle spinning (MAS) NMR and molecular dynamics (MD). Through the analysis of backbone (1)H-(15)N and (1)H-(13)C dipolar tensors and peak intensities from 3D MAS NMR spectra of wild-type and the A92E and G94D CypA escape mutants, we demonstrate that assembled CA is dynamic, particularly in loop regions. The CypA loop in assembled wild-type CA from two strains exhibits unprecedented mobility on the nanosecond to microsecond timescales, and the experimental NMR dipolar order parameters are in quantitative agreement with those calculated from MD trajectories. Remarkably, the CypA loop dynamics of wild-type CA HXB2 assembly is significantly attenuated upon CypA binding, and the dynamics profiles of the A92E and G94D CypA escape mutants closely resemble that of wild-type CA assembly in complex with CypA. These results suggest that CypA loop dynamics is a determining factor in HIV-1's escape from CypA dependence.


Assuntos
Capsídeo/química , Ciclofilina A/química , HIV-1/química , Regulação Alostérica , Capsídeo/ultraestrutura , Ciclofilina A/ultraestrutura , HIV-1/ultraestrutura , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Mutação/genética , Fatores de Tempo
13.
J Biol Chem ; 291(33): 16936-16947, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354282

RESUMO

Evolutionarily conserved structure-selective endonuclease MUS81 forms a complex with EME1 and further associates with another endonuclease SLX4-SLX1 to form a four-subunit complex of MUS81-EME1-SLX4-SLX1, coordinating distinctive biochemical activities of both endonucleases in DNA repair. Viral protein R (Vpr), a highly conserved accessory protein in primate lentiviruses, was previously reported to bind SLX4 to mediate down-regulation of MUS81. However, the detailed mechanism underlying MUS81 down-regulation is unclear. Here, we report that HIV-1 Vpr down-regulates both MUS81 and its cofactor EME1 by hijacking the host CRL4-DCAF1 E3 ubiquitin ligase. Multiple Vpr variants, from HIV-1 and SIV, down-regulate both MUS81 and EME1. Furthermore, a C-terminally truncated Vpr mutant and point mutants R80A and Q65R, all of which lack G2 arrest activity, are able to down-regulate MUS81-EME1, suggesting that Vpr-induced G2 arrest is not correlated with MUS81-EME1 down-regulation. We also show that neither the interaction of MUS81-EME1 with Vpr nor their down-regulation is dependent on SLX4-SLX1. Together, these data provide new insight on a conserved function of Vpr in a host endonuclease down-regulation.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Regulação para Baixo , Endodesoxirribonucleases/biossíntese , Endonucleases/biossíntese , Endonucleases/metabolismo , HIV-1/metabolismo , Recombinases/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Substituição de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Endonucleases/genética , HIV-1/genética , Humanos , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases , Recombinases/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
14.
J Virol ; 90(15): 6918-6935, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27307565

RESUMO

UNLABELLED: Cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a host factor that interacts with the HIV-1 capsid (CA) protein, is implicated in diverse functions during the early part of the HIV-1 life cycle, including uncoating, nuclear entry, and integration targeting. Preservation of CA binding to CPSF6 in vivo suggests that this interaction is fine-tuned for efficient HIV-1 replication in physiologically relevant settings. Nevertheless, this possibility has not been formally examined. To assess the requirement for optimal CPSF6-CA binding during infection of primary cells and in vivo, we utilized a novel CA mutation, A77V, that significantly reduced CA binding to CPSF6. The A77V mutation rendered HIV-1 largely independent from TNPO3, NUP358, and NUP153 for infection and altered the integration site preference of HIV-1 without any discernible effects during the late steps of the virus life cycle. Surprisingly, the A77V mutant virus maintained the ability to replicate in monocyte-derived macrophages, primary CD4(+) T cells, and humanized mice at a level comparable to that for the wild-type (WT) virus. Nonetheless, revertant viruses that restored the WT CA sequence and hence CA binding to CPSF6 emerged in three out of four A77V-infected animals. These results suggest that the optimal interaction of CA with CPSF6, though not absolutely essential for HIV-1 replication in physiologically relevant settings, confers a significant fitness advantage to the virus and thus is strictly conserved among naturally circulating HIV-1 strains. IMPORTANCE: CPSF6 interacts with the HIV-1 capsid (CA) protein and has been implicated in nuclear entry and integration targeting. Preservation of CPSF6-CA binding across various HIV-1 strains suggested that the optimal interaction between CA and CPSF6 is critical during HIV-1 replication in vivo Here, we identified a novel HIV-1 capsid mutant that reduces binding to CPSF6, is largely independent from the known cofactors for nuclear entry, and alters integration site preference. Despite these changes, virus carrying this mutation replicated in humanized mice at levels indistinguishable from those of the wild-type virus. However, in the majority of the animals, the mutant virus reverted back to the wild-type sequence, hence restoring the wild-type level of CA-CPSF6 interactions. These results suggest that optimal binding of CA to CPSF6 is not absolutely essential for HIV-1 replication in vivo but provides a fitness advantage that leads to the widespread usage of CPSF6 by HIV-1 in vivo.


Assuntos
Linfócitos T CD4-Positivos/virologia , Proteínas do Capsídeo/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Macrófagos/virologia , Replicação Viral , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Células HEK293 , Infecções por HIV/metabolismo , Células HeLa , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD
15.
Nucleic Acids Res ; 43(5): e28, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25414325

RESUMO

Molecular inversion probe (MIP)-based capture is a scalable and effective target-enrichment technology that can use synthetic single-stranded oligonucleotides as probes. Unlike the straightforward use of synthetic oligonucleotides for low-throughput target capture, high-throughput MIP capture has required laborious protocols to generate thousands of single-stranded probes from DNA microarray because of multiple enzymatic steps, gel purifications and extensive PCR amplifications. Here, we developed a simple and efficient microarray-based MIP preparation protocol using only one enzyme with double-stranded probes and improved target capture yields by designing probes with overlapping targets and unique barcodes. To test our strategy, we produced 11 510 microarray-based duplex MIPs (microDuMIPs) and captured 3554 exons of 228 genes in a HapMap genomic DNA sample (NA12878). Under our protocol, capture performance and precision of calling were compatible to conventional MIP capture methods, yet overlapping targets and unique barcodes allowed us to precisely genotype with as little as 50 ng of input genomic DNA without library preparation. microDuMIP method is simpler and cheaper, allowing broader applications and accurate target sequencing with a scalable number of targets.


Assuntos
DNA de Cadeia Simples/genética , Técnicas de Sonda Molecular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos/genética , Exoma/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
16.
Biochemistry ; 55(39): 5635-5646, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27588835

RESUMO

The sterile alpha motif (SAM) and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) constitute a triphosphohydrolase that converts deoxyribonucleoside triphosphates (dNTPs) into deoxyribonucleosides and triphosphates. SAMHD1 exists in multiple states. The monomer and apo- or GTP-bound dimer are catalytically inactive. Binding of dNTP at allosteric site 2 (AS2), adjacent to GTP-binding allosteric site 1 (AS1), induces formation of the tetramer, the catalytically active form. We have developed an enzyme kinetic assay, tailored to control specific dNTP binding at each site, allowing us to determine the kinetic binding parameters of individual dNTPs at both the AS2 and catalytic sites for all possible combinations of dNTP binding at both sites. Here, we show that the apparent Km values of dNTPs at AS2 vary in the order of dCTP < dGTP < dATP < dTTP. Interestingly, dCTP binding at AS2 significantly reduces the dCTP hydrolysis rate, which is restored to a rate comparable to that of other dNTPs upon dGTP, dATP, or dTTP binding at AS2. Strikingly, a phosphomimetic mutant, Thr592Asp SAMHD1 as well as phospho-Thr592, show a significantly altered substrate specificity, with the rate of dCTP hydrolysis being selectively reduced regardless of which dNTP binds at AS2. Furthermore, cyclin A2 binding at the C-terminus of SAMHD1 induces the disassembly of the SAMHD1 tetramer, suggesting an additional layer of SAMHD1 activity modulation by cyclin A2/CDK2 kinase. Together, our results reveal multiple allosteric mechanisms for controlling the rate of dNTP destruction by SAMHD1.


Assuntos
Desoxirribonucleotídeos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Treonina/metabolismo , Catálise , Proteínas Monoméricas de Ligação ao GTP/química , Fosforilação , Proteína 1 com Domínio SAM e Domínio HD , Especificidade por Substrato
17.
J Biol Chem ; 290(21): 13279-92, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25847232

RESUMO

SAMHD1 is a nuclear deoxyribonucleoside triphosphate triphosphohydrolase that contributes to the control of cellular deoxyribonucleoside triphosphate (dNTP) pool sizes through dNTP hydrolysis and modulates the innate immune response to viruses. CyclinA2-CDK1/2 phosphorylates SAMHD1 at Thr-592, but how this modification controls SAMHD1 functions in proliferating cells is not known. Here, we show that SAMHD1 levels remain relatively unchanged during the cell division cycle in primary human T lymphocytes and in monocytic cell lines. Inactivation of the bipartite cyclinA2-CDK-binding site in the SAMHD1 C terminus described herein abolished SAMHD1 phosphorylation on Thr-592 during S and G2 phases thus interfering with DNA replication and progression of cells through S phase. The effects exerted by Thr-592 phosphorylation-defective SAMHD1 mutants were associated with activation of DNA damage checkpoint and depletion of dNTP concentrations to levels lower than those seen upon expression of wild type SAMHD1 protein. These disruptive effects were relieved by either mutation of the catalytic residues of the SAMHD1 phosphohydrolase domain or by a Thr-592 phosphomimetic mutation, thus linking the Thr-592 phosphorylation state to the control of SAMHD1 dNTPase activity. Our findings support a model in which phosphorylation of Thr-592 by cyclinA2-CDK down-modulates, but does not inactivate, SAMHD1 dNTPase in S phase, thereby fine-tuning SAMHD1 control of dNTP levels during DNA replication.


Assuntos
Ciclo Celular/fisiologia , Ciclina A2/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Monócitos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Linfócitos T/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Western Blotting , Proteína Quinase CDC2 , Células Cultivadas , Ciclina A2/genética , Quinase 2 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Células HEK293 , Humanos , Hidrólise , Técnicas Imunoenzimáticas , Imunoprecipitação , Dados de Sequência Molecular , Monócitos/citologia , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação/genética , Fosforilação , Estrutura Terciária de Proteína , Proteína 1 com Domínio SAM e Domínio HD , Homologia de Sequência de Aminoácidos , Linfócitos T/citologia
18.
J Biol Chem ; 290(29): 17935-17945, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26045556

RESUMO

Sterile α motif (SAM) and histidine/aspartate (HD)-containing protein 1 (SAMHD1) restricts human/simian immunodeficiency virus infection in certain cell types and is counteracted by the virulence factor Vpx. Current evidence indicates that Vpx recruits SAMHD1 to the Cullin4-Ring Finger E3 ubiquitin ligase (CRL4) by facilitating an interaction between SAMHD1 and the substrate receptor DDB1- and Cullin4-associated factor 1 (DCAF1), thereby targeting SAMHD1 for proteasome-dependent down-regulation. Host-pathogen co-evolution and positive selection at the interfaces of host-pathogen complexes are associated with sequence divergence and varying functional consequences. Two alternative interaction interfaces are used by SAMHD1 and Vpx: the SAMHD1 N-terminal tail and the adjacent SAM domain or the C-terminal tail proceeding the HD domain are targeted by different Vpx variants in a unique fashion. In contrast, the C-terminal WD40 domain of DCAF1 interfaces similarly with the two above complexes. Comprehensive biochemical and structural biology approaches permitted us to delineate details of clade-specific recognition of SAMHD1 by lentiviral Vpx proteins. We show that not only the SAM domain but also the N-terminal tail engages in the DCAF1-Vpx interaction. Furthermore, we show that changing the single Ser-52 in human SAMHD1 to Phe, the residue found in SAMHD1 of Red-capped monkey and Mandrill, allows it to be recognized by Vpx proteins of simian viruses infecting those primate species, which normally does not target wild type human SAMHD1 for degradation.


Assuntos
Interações Hospedeiro-Patógeno , Infecções por Lentivirus/metabolismo , Lentivirus/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Células HEK293 , Humanos , Infecções por Lentivirus/virologia , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/química , Estrutura Terciária de Proteína , Proteína 1 com Domínio SAM e Domínio HD , Alinhamento de Sequência , Proteínas Virais Reguladoras e Acessórias/química
19.
J Am Chem Soc ; 138(42): 14066-14075, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27701859

RESUMO

HIV-1 CA capsid protein possesses intrinsic conformational flexibility, which is essential for its assembly into conical capsids and interactions with host factors. CA is dynamic in the assembled capsid, and residues in functionally important regions of the protein undergo motions spanning many decades of time scales. Chemical shift anisotropy (CSA) tensors, recorded in magic-angle-spinning NMR experiments, provide direct residue-specific probes of motions on nano- to microsecond time scales. We combined NMR, MD, and density-functional-theory calculations, to gain quantitative understanding of internal backbone dynamics in CA assemblies, and we found that the dynamically averaged 15N CSA tensors calculated by this joined protocol are in remarkable agreement with experiment. Thus, quantitative atomic-level understanding of the relationships between CSA tensors, local backbone structure, and motions in CA assemblies is achieved, demonstrating the power of integrating NMR experimental data and theory for characterizing atomic-resolution dynamics in biological systems.

20.
Biol Chem ; 397(4): 373-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26733158

RESUMO

Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) is a triphosphohydrolase that catalyzes the conversion of deoxyribonucleoside triphosphate to deoxyribonucleoside and triphosphate. SAMHD1 has been a recent focus of study since it was identified as a potent human immunodeficiency virus-1 (HIV-1) restriction factor in the intrinsic antiviral immune system. Recent biochemical and biological studies have suggested that SAMHD1 restricts HIV-1 infection in non-cycling cells by limiting the pool of deoxyribonucleoside triphosphates, thereby interfering with HIV-1 reverse transcription. SAMHD1 also possesses single-stranded DNA and RNA binding activity, with reported nuclease activity, conferring additional HIV-1 restriction function. This review summarizes current knowledge regarding the structure of SAMHD1 and the regulation of its function in HIV-1 restriction.


Assuntos
Infecções por HIV/virologia , HIV-1/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/genética , HIV-1/imunologia , Humanos , Proteínas Monoméricas de Ligação ao GTP/imunologia , Proteína 1 com Domínio SAM e Domínio HD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA