Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 12019, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104703

RESUMO

We fabricated W-doped In2O3 (IWO) films at room temperature on a flexible PET substrate using an in-line arc plasma ion plating system for application as flexible transparent conducting electrodes (FTCEs) in flexible organic light emitting diodes (OLEDs) and quantum dots light emitting diodes (QDLEDs). Due to the high-energy flux of the sublimated ions generated from the plasma region, the IWO films showed a well-developed crystalline structure with a low sheet resistance of 36.39 Ohm/square and an optical transmittance of 94.6% even though they were prepared at room temperature. The low sheet resistance of the IWO film processed at room temperature is attributed to the high mobility (59 cm2/V-s) in the well-developed crystalline structure of the ion-plated IWO film and screening effect of W dopants. In addition, the better adhesion of the ion-plated IWO film on the PET substrate led to small critical outer and inner bending radii of 6 and 3 mm, respectively, against substrate bending. Due to the low sheet resistance, high optical transmittance, better crystallinity, better adhesion, and outstanding flexibility of the ion-plated IWO films, the flexible OLEDs and QDLEDs with the IWO electrodes showed better performances than flexible OLEDs and QDLEDs with sputtered flexible ITO anodes. This indicates that in-line arc plasma ion plating is a promising large area coating technique to realize room temperature processed high-quality FTCEs for flexible OLEDs and QDLEDs.

2.
Nanoscale ; 10(44): 20587-20598, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30265266

RESUMO

We report high performance flexible Sn-doped In2O3 (ITO) films prepared by in-line type vertical plasma arc ion plating for high performance flexible perovskite solar cells. Even at room temperature deposition, the ion-plated ITO film showed a low sheet resistance of 15.75 Ohm per square, a high average optical transmittance of 85.88% and a small outer bending radius of 5 mm because energetic ITO ions accelerated to the substrate led to better crystallinity and adhesion than sputtered ITO films. In addition, the ion-plated ITO films showed atomically flat and smooth surfaces due to different growth mechanisms and the absence of resputtering effects during the ion plating process. Flexible perovskite solar cells fabricated on the ion-plated ITO electrodes showed a higher power conversion efficiency of 16.8% than the sputtered ITO-based perovskite solar cell, indicating the potential of ion plated ITO films as promising flexible and transparent electrodes for perovskite solar cells.

3.
J Nanosci Nanotechnol ; 16(5): 4856-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483834

RESUMO

Cu(In, Ga)S2 (CIGS) absorbers were prepared using two-step process. Cu-In-Ga precursors were deposited by sputtering method and then were sulfurized by rapid thermal process based on H2S gas. Sulfurization temperature was changed from 470 degrees C to 510 degrees C. As the processing temperature increased, larger grains and denser absorbers were observed. The polycrystalline chalcopyrite structure of CuInGaS2 was shown in all samples, and their XRD peak was dominantly observed at (112) direction. CIGS thin film solar cells were fabricated with wide-bandgap absorbers obtained by varying sulfurization temperature. The best efficiency was shown with the processing temperature of 490 degrees C and 8.93% with 1.507 eV of wide optical bandgap.

4.
FEBS Lett ; 586(10): 1439-44, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22673508

RESUMO

The N-terminal domain of Enzyme I (EIN) and phosphocarrier HPr can form a biphosphorylated complex when they are both phosphorylated by excess cellular phosphoenolpyruvate. Here we show that the electrostatic repulsion between the phosphoryl groups in the biphosphorylated complex results in characteristic dynamics at the active site in a millisecond time scale. The dynamics is localized to phospho-His15 and the stabilizing backbone amide groups of HPr, and does not impact on the phospho-His189 of EIN. The dynamics occurs with the k(ex) of ~500 s(-1) which compares to the phosphoryl transfer rate of ~850 s(-1) between EIN and HPr. The conformational dynamics in HPr may be important for its phosphotransfer reactions with multiple partner proteins.


Assuntos
Fosfotransferases/metabolismo , Amidas/metabolismo , Domínio Catalítico , Clonagem Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Fosfotransferases/genética , Fosfotransferases/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA