Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microcirculation ; 27(2): e12593, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31605649

RESUMO

OBJECTIVE: The effect of insulin on blood flow distribution within muscle microvasculature has been suggested to be important for glucose metabolism. However, the "capillary recruitment" hypothesis is still controversial and relies on studies using indirect contrast-enhanced ultrasound (CEU) methods. METHODS: We studied how hyperinsulinemia effects capillary blood flow in rat extensor digitorum longus (EDL) muscle during euglycemic hyperinsulinemic clamp using intravital video microscopy (IVVM). Additionally, we modeled blood flow and microbubble distribution within the vascular tree under conditions observed during euglycemic hyperinsulinemic clamp experiments. RESULTS: Euglycemic hyperinsulinemia caused an increase in erythrocyte (80 ± 25%, P < .01) and plasma (53 ± 12%, P < .01) flow in rat EDL microvasculature. We found no evidence of de novo capillary recruitment within, or among, capillary networks supplied by different terminal arterioles; however, erythrocyte flow became slightly more homogenous. Our computational model predicts that a decrease in asymmetry at arteriolar bifurcations causes redistribution of microbubble flow among capillaries already perfused with erythrocytes and plasma, resulting in 25% more microbubbles flowing through capillaries. CONCLUSIONS: Our model suggests increase in CEU signal during hyperinsulinemia reflects a redistribution of arteriolar flow and not de novo capillary recruitment. IVVM experiments support this prediction showing increases in erythrocyte and plasma flow and not capillary recruitment.


Assuntos
Capilares , Hiperinsulinismo , Microcirculação , Músculo Esquelético , Animais , Capilares/metabolismo , Capilares/fisiopatologia , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatologia , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia , Ratos , Ratos Sprague-Dawley
2.
J Physiol ; 595(16): 5557-5571, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620941

RESUMO

KEY POINTS: Mechanotransduction in endothelial cells is a central mechanism in the regulation of vascular tone and vascular remodelling Mechanotransduction and vascular function may be affected by high sugar levels in plasma because of a resulting increase in oxidative stress and increased levels of advanced glycation end-products (AGE). In healthy young subjects, 2 weeks of daily supplementation with 3 × 75 g of sucrose was found to reduce blood flow in response to passive lower leg movement and in response to 12 W of knee extensor exercise. This vascular impairment was paralleled by up-regulation of platelet endothelial cell adhesion molecule (PECAM)-1, endothelial nitric oxide synthase, NADPH oxidase and Rho family GTPase Rac1 protein expression, an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. There were no measurable changes in AGE levels. The findings of the present study demonstrate that daily high sucrose intake markedly affects mechanotransduction proteins and has a detrimental effect on vascular function. ABSTRACT: Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular function in humans, 12 young healthy male subjects supplemented their diet with 3 × 75 g sucrose day-1 for 14 days in a randomized cross-over design. Before and after the intervention period, the hyperaemic response to passive lower leg movement and active knee extensor exercise was determined by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement to allow assessment of protein amounts and the phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2%) and to 12 W of active exercise (by 9 ± 1%), indicating impaired vascular function. A reduced flow response to passive and active exercise was paralleled by a significant up-regulation of platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho family GTPase Rac1 protein expression in the muscle tissue, as well as an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. The phosphorylation status was not acutely altered with passive leg movement. These findings indicate that a regular intake of high levels of sucrose can impair vascular mechanotransduction and increase the oxidative stress potential, and suggest that dietary excessive sugar intake may contribute to the development of vascular disease.


Assuntos
Sacarose Alimentar/farmacologia , Adulto , Antígenos CD/fisiologia , Caderinas/fisiologia , Estudos Cross-Over , Epoprostenol/fisiologia , Exercício Físico/fisiologia , Artéria Femoral/fisiologia , Produtos Finais de Glicação Avançada/sangue , Humanos , Perna (Membro)/fisiologia , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologia , Óxidos de Nitrogênio/sangue , Fosforilação , RNA Mensageiro/metabolismo , Receptor para Produtos Finais de Glicação Avançada/sangue , Fluxo Sanguíneo Regional , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Adulto Jovem
4.
Am J Physiol Endocrinol Metab ; 307(12): E1105-16, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25352432

RESUMO

Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. Therefore, we investigated whether increased skeletal muscle capillarization increases insulin sensitivity. Skeletal muscle-specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist prazosin to the drinking water of Sprague-Dawley rats (n = 33), whereas 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-wk prazosin treatment, which ensured that prazosin was cleared from the blood stream. Whole body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue-specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]glucose during the plateau phase of the clamp. Whole body insulin sensitivity increased by ∼24%, and insulin-stimulated skeletal muscle 2-deoxy-[(3)H]glucose disposal increased by ∼30% concomitant with an ∼20% increase in skeletal muscle capillarization. Adipose tissue insulin sensitivity was not affected by the treatment. Insulin-stimulated muscle glucose uptake was enhanced independent of improvements in skeletal muscle insulin signaling to glucose uptake and glycogen synthesis, suggesting that the improvement in insulin-stimulated muscle glucose uptake could be due to improved diffusion conditions for glucose in the muscle. The prazosin treatment did not affect the rats on any other parameters measured. We conclude that an increase in skeletal muscle capillarization is associated with increased insulin sensitivity. These data point toward the importance of increasing skeletal muscle capillarization for prevention or treatment of type 2 diabetes.


Assuntos
Resistência à Insulina , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Glucose/metabolismo , Técnica Clamp de Glucose , Insulina/farmacologia , Masculino , Microcirculação/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Prazosina/farmacologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima
5.
Am J Physiol Heart Circ Physiol ; 307(8): H1111-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128170

RESUMO

In animal studies, the polyphenol resveratrol has been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim of the present study was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Forty-three healthy physically inactive aged men (65 ± 1 yr) were divided into 1) a training group that conducted 8 wk of intense exercise training where half of the subjects received a daily intake of either 250 mg trans-resveratrol (n = 14) and the other half received placebo (n = 13) and 2) a nontraining group that received either 250 mg trans-resveratrol (n = 9) or placebo (n = 7). The group that trained with placebo showed a ~20% increase in the capillary-to-fiber ratio, an increase in muscle protein expression of VEGF, VEGF receptor-2, and tissue inhibitor of matrix metalloproteinase (TIMP-1) but unaltered thrombospodin-1 levels. Muscle interstitial VEGF and thrombospodin-1 protein levels were unchanged after the training period. The group that trained with resveratrol supplementation did not show an increase in the capillary-to-fiber ratio or an increase in muscle VEGF protein. Muscle TIMP-1 protein levels were lower in the training and resveratrol group than in the training and placebo group. Both training groups showed an increase in forkhead box O1 protein. In nontraining groups, TIMP-1 protein was lower in the resveratrol-treated group than the placebo-treated group after 8 wk. In conclusion, these data show that exercise training has a strong angiogenic effect, whereas resveratrol supplementation may limit basal and training-induced angiogenesis.


Assuntos
Exercício Físico , Músculo Esquelético/fisiologia , Neovascularização Fisiológica , Estilbenos/farmacologia , Idoso , Estudos de Casos e Controles , Suplementos Nutricionais , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Resveratrol , Estilbenos/administração & dosagem , Trombospondina 1/genética , Trombospondina 1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
J Endocr Soc ; 6(9): bvac111, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35935071

RESUMO

Context and objective: Obesity and inactivity are risk factors for developing impaired glucose tolerance characterized by insulin resistance and reduced beta-cell function. The stimulatory effect of glucagon-like peptide 1 (GLP-1) on insulin secretion is also impaired in obese, inactive individuals. The aim of this study was to investigate whether endurance training influences beta-cell sensitivity to GLP-1. Participants and intervention: Twenty-four female participants, age 46 ±â€…2 years, body mass index 32.4 ±â€…0.9 kg/m2, and maximal oxygen consumption 24.7 ±â€…0.8 mL/kg/min participated in a 10-week exercise training study. Methods: Beta-cell sensitivity to GLP-1 was assessed in a subset of participants (n = 6) during a 120-minute hyperglycemic glucose clamp (8.5 mM) including a 1-hour GLP-1 (7-36 amide) infusion (0.4 pmol/kg/min). Changes in glucose tolerance, body composition, and cardiorespiratory fitness were assessed by oral glucose tolerance tests (OGTTs), dual-energy X-ray absorptiometry scans, magnetic resonance scans, and maximal oxygen consumption (VO2max) tests, respectively. Results: The c-peptide response to infusion of GLP-1 increased 28 ±â€…3% (P < 0.05) toward the end of the hyperglycemic clamp. The insulin response remained unchanged. Training improved glucose tolerance and reduced GLP-1, insulin, and glucagon levels during the OGTTs. Training increased VO2max (from 24.7 ±â€…0.8 to 27.0 ±â€…0.7 mL/kg/min; P < 0.05) and reduced visceral fat volume (from 4176 ±â€…265 to 3888 ±â€…266 cm3; P < 0.01). Conclusion: Along with improved glycemic control, endurance training improved beta-cell sensitivity to GLP-1 in overweight women. The study was deemed not to constitute a clinical trial and was not registered as such.

7.
Am J Physiol Endocrinol Metab ; 300(5): E761-70, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325105

RESUMO

While production of reactive oxygen and nitrogen species (RONS) is associated with some of the beneficial adaptations to regular physical exercise, it is not established whether RONS play a role in the improved insulin-stimulated glucose uptake in skeletal muscle obtained by endurance training. To assess the effect of antioxidant supplementation during endurance training on insulin-stimulated glucose uptake, 21 young healthy (age 29 ± 1 y, BMI 25 ± 3 kg/m(2)) men were randomly assigned to either an antioxidant [AO; 500 mg vitamin C and 400 IU vitamin E (α-tocopherol) daily] or a placebo (PL) group that both underwent a supervised intense endurance-training program 5 times/wk for 12 wk. A 3-h euglycemic-hyperinsulinemic clamp, a maximal oxygen consumption (Vo(2max)) and maximal power output (P(max)) test, and body composition measurements (fat mass, fat-free mass) were performed before and after the training. Muscle biopsies were obtained for determination of the concentration and activity of proteins regulating glucose metabolism. Although plasma levels of vitamin C (P < 0.05) and α-tocopherol (P < 0.05) increased markedly in the AO group, insulin-stimulated glucose uptake increased similarly in both the AO (17.2%, P < 0.05) and the PL (18.9%, P < 0.05) group in response to training. Vo(2max) and P(max) also increased similarly in both groups (time effect, P < 0.0001 for both) as well as protein content of GLUT4, hexokinase II, and total Akt (time effect, P ≤ 0.05 for all). Our results indicate that administration of antioxidants during strenuous endurance training has no effect on the training-induced increase in insulin sensitivity in healthy individuals.


Assuntos
Antioxidantes/farmacologia , Composição Corporal , Suplementos Nutricionais , Resistência Física/fisiologia , Aptidão Física/fisiologia , Absorciometria de Fóton , Adulto , Limiar Anaeróbio/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Western Blotting , Método Duplo-Cego , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina/fisiologia , Luminescência , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Oxigênio/sangue , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vitamina E/farmacologia , Adulto Jovem
8.
J Physiol ; 588(Pt 20): 4029-37, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20724368

RESUMO

Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR-1, miR-133a, miR-133b and miR-206 in muscle biopsies from vastus lateralis of healthy young males (n = 10) in relation to a hyperinsulinaemic­euglycaemic clamp as well as acute endurance exercise before and after 12 weeks of endurance training. The subjects increased their endurance capacity, VO2max (l min−1) by 17.4% (P < 0.001), and improved insulin sensitivity by 19% (P < 0.01). While myomiR expression remained stable during a hyperinsulinaemic­euglycaemic clamp, an acute bout of exercise increased mir-1 (P < 0.05) and mir-133a (P < 0.05) expression before, but not after, training. In resting biopsies, endurance training for 12 weeks decreased basal expression of all four myomiRs (P < 0.05). Interestingly, all myomiRs reverted to their pre-training expression levels 14 days after ceasing the training programme. Components of major pathways involved in endurance adaptation such as MAPK and TGF-ß were predicted to be targeted by the myomiRs examined. Tested predicted target proteins included Cdc42 and ERK 1/2. Although these proteins were downregulated between post-training period and 2 weeks of cessation, an inverse correlation between myomiR and target proteins was not found. In conclusion, our data suggest myomiRs respond to physiological stimuli, but their role in regulating human skeletal muscle adaptation remains unknown.


Assuntos
Exercício Físico/fisiologia , MicroRNAs/fisiologia , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Adulto , Análise de Variância , Western Blotting , Composição Corporal/fisiologia , Técnica Clamp de Glucose , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Transdução de Sinais/fisiologia
9.
J Diabetes Res ; 2020: 9626398, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832565

RESUMO

INTRODUCTION: Current clinical guidelines for management of diabetic peripheral neuropathy (DPN) emphasize good glycemic control. However, this has limited effect on prevention of DPN in type 2 diabetic (T2D) patients. This study investigates the effect of insulin treatment on development of DPN in a rat model of T2D to assess the underlying causes leading to DPN. METHODS: Twelve-week-old male Sprague-Dawley rats were allocated to a normal chow diet or a 45% kcal high-fat diet. After eight weeks, the high-fat fed animals received a mild dose of streptozotocin to induce hyperglycemia. Four weeks after diabetes induction, the diabetic animals were allocated into three treatment groups receiving either no insulin or insulin-releasing implants in a high or low dose. During the 12-week treatment period, blood glucose and body weight were monitored weekly, whereas Hargreaves' test was performed four, eight, and 12 weeks after treatment initiation. At study termination, several blood parameters, body composition, and neuropathy endpoints were assessed. RESULTS: Insulin treatment lowered blood glucose in a dose-dependent manner. In addition, both doses of insulin lowered lipids and increased body fat percentage. High-dose insulin treatment attenuated small nerve fiber damage assessed by Hargreaves' test and intraepidermal nerve fiber density compared to untreated diabetes and low-dose insulin; however, neuropathy was not completely prevented by tight glycemic control. Linear regression analysis revealed that glycemic status, circulating lipids, and sciatic nerve sorbitol level were all negatively associated with the small nerve fiber damage observed. CONCLUSION: In summary, our data suggest that high-dose insulin treatment attenuates small nerve fiber damage. Furthermore, data also indicate that both poor glycemic control and dyslipidemia are associated with disease progression. Consequently, this rat model of T2D seems to fit well with progression of DPN in humans and could be a relevant preclinical model to use in relation to research investigating treatment opportunities for DPN.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/prevenção & controle , Insulina/uso terapêutico , Neuropatia de Pequenas Fibras/prevenção & controle , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica , Progressão da Doença , Humanos , Masculino , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/patologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/fisiologia
10.
J Appl Physiol (1985) ; 106(6): 1771-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19228984

RESUMO

Glucose ingestion during exercise attenuates activation of metabolic enzymes and expression of important transport proteins. In light of this, we hypothesized that glucose ingestion during training would result in 1) an attenuation of the increase in fatty acid uptake and oxidation during exercise, 2) lower citrate synthase (CS) and beta-hydroxyacyl-CoA dehydrogenase (beta-HAD) activity and glycogen content in skeletal muscle, and 3) attenuated endurance performance enhancement in the trained state. To investigate this we studied nine male subjects who performed 10 wk of one-legged knee extensor training. They trained one leg while ingesting a 6% glucose solution (Glc) and ingested a sweetened placebo while training the other leg (Plc). The subjects trained their respective legs 2 h at a time on alternate days 5 days a week. Endurance training increased peak power (P(max)) and time to fatigue at 70% of P(max) approximately 14% and approximately 30%, respectively. CS and beta-HAD activity increased and glycogen content was greater after training, but there were no differences between Glc and Plc. After training the rate of oxidation of palmitate (R(ox)) and the % of rate of disappearance that was oxidized (%R(dox)) changed. %R(dox) was on average 16.4% greater during exercise after training whereas, after exercise %R(dox) was 30.4% lower. R(ox) followed the same pattern. However, none of these parameters were different between Glc and Plc. We conclude that glucose ingestion during training does not alter training adaptation related to substrate metabolism, mitochondrial enzyme activity, glycogen content, or performance.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/administração & dosagem , Resistência Física/efeitos dos fármacos , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Adaptação Fisiológica/fisiologia , Adulto , Citrato (si)-Sintase/metabolismo , Teste de Esforço , Fadiga , Glicogênio/metabolismo , Humanos , Masculino , Oxirredução , Palmitatos/metabolismo , Resistência Física/fisiologia , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/efeitos dos fármacos , Músculo Quadríceps/metabolismo
11.
Exp Physiol ; 94(11): 1124-31, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19592412

RESUMO

Glucose ingestion during exercise attenuates the release of the myokine interleukin-6 (IL-6) from working skeletal muscle, which results in a diminished increase in plasma IL-6. Interleukin-6 receptor alpha (IL-6Ralpha) expression in skeletal muscle is induced by acute exercise, mediated in part by an increased IL-6 concentration in the bloodstream. We hypothesized that endurance training would increase the density of IL-6Ralpha in skeletal muscle and that glucose ingestion would attenuate the effect. Nine subjects performed 10 weeks of one-legged knee-extensor training. They trained one leg (Glc-leg) while ingesting a glucose solution (Glc) and ingested a placebo (Plc) while training the other leg (Plc-leg). Endurance training increased peak power by 14% and reduced the exercise-induced gene expression of IL-6 and IL-6Ralpha in skeletal muscle and IL-6 plasma concentration. The IL-6Ralpha density increased to a lesser extent in the Glc-leg, suggesting that glucose ingestion attenuates the effect of training on IL-6Ralpha by blunting the IL-6 response. We conclude that glucose ingestion during endurance training attenuates the increase in IL-6Ralpha density.


Assuntos
Glucose/farmacologia , Subunidade alfa de Receptor de Interleucina-6/biossíntese , Resistência Física/fisiologia , Aptidão Física/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Ciclismo/fisiologia , Western Blotting , Humanos , Interleucina-6/sangue , Subunidade alfa de Receptor de Interleucina-6/genética , Masculino , Músculo Esquelético/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
12.
J Physiol ; 586(8): 2195-201, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18292129

RESUMO

The leukaemia inhibitory factor (LIF) belongs to the interleukin (IL)-6 cytokine superfamily and is constitutively expressed in skeletal muscle. We tested the hypothesis that LIF expression in human skeletal muscle is regulated by exercise. Fifteen healthy young male volunteers performed either 3 h of cycle ergometer exercise at approximately 60% of VO2,max(n = 8) or rested (n = 7). Muscle biopsies were obtained from the vastus lateralis prior to exercise, immediately after exercise, and at 1.5, 3, 6 and 24 h post exercise. Control subjects had biopsy samples taken at the same time points as during the exercise trial. Skeletal muscle LIF mRNA increased immediately after the exercise and declined gradually during recovery. However, LIF protein was unchanged at the investigated time points. Moreover, we tested the hypothesis that LIF mRNA and protein expressions are modulated by calcium (Ca(2+)) in primary human skeletal myocytes. Treatment of myocytes with the Ca(2+) ionophore, ionomycin, for 6 h resulted in an increase in both LIF mRNA and LIF protein levels. This finding suggests that Ca(2+) may be involved in the regulation of LIF in endurance-exercised skeletal muscle. In conclusion, primary human skeletal myocytes have the capability to produce LIF in response to ionomycin stimulation and LIF mRNA levels increase in skeletal muscle following concentric exercise. The finding that the increase in LIF mRNA levels is not followed by a similar increase in skeletal muscle LIF protein suggests that other exercise stimuli or repetitive stimuli are necessary in order to induce a detectable accumulation of LIF protein.


Assuntos
Regulação da Expressão Gênica/fisiologia , Fator Inibidor de Leucemia/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Esforço Físico/fisiologia , Adulto , Células Cultivadas , Humanos , Masculino
13.
J Physiol ; 586(14): 3551-62, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18511485

RESUMO

Skeletal muscle has been identified as a secretory organ. We hypothesized that IL-6, a cytokine secreted from skeletal muscle during exercise, could induce production of other secreted factors in skeletal muscle. IL-6 was infused for 3 h into healthy young males (n = 7) and muscle biopsies obtained at time points 0, 3 and 6 h in these individuals and in resting controls. Affymetrix microarray analysis of gene expression changes in skeletal muscle biopsies identified a small set of genes changed by IL-6 infusion. RT-PCR validation confirmed that S100A8 and S100A9 mRNA were up-regulated 3-fold in skeletal muscle following IL-6 infusion compared to controls. Furthermore, S100A8 and S100A9 mRNA levels were up-regulated 5-fold in human skeletal muscle following cycle ergometer exercise for 3 h at approximately 60% of in young healthy males (n = 8). S100A8 and S100A9 form calprotectin, which is known as an acute phase reactant. Plasma calprotectin increased 5-fold following acute cycle ergometer exercise in humans, but not following IL-6 infusion. To identify the source of calprotectin, healthy males (n = 7) performed two-legged dynamic knee extensor exercise for 3 h with a work load of approximately 50% of peak power output and arterial-femoral venous differences were obtained. Arterial plasma concentrations for calprotectin increased 2-fold compared to rest and there was a net release of calprotectin from the working muscle. In conclusion, IL-6 infusion and muscle contractions induce expression of S100A8 and S100A9 in skeletal muscle. However, IL-6 alone is not a sufficient stimulus to facilitate release of calprotectin from skeletal muscle.


Assuntos
Exercício Físico/fisiologia , Interleucina-6/farmacologia , Complexo Antígeno L1 Leucocitário/metabolismo , Músculo Esquelético/metabolismo , Adulto , Biópsia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Interleucina-6/administração & dosagem , Complexo Antígeno L1 Leucocitário/genética , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
J Appl Physiol (1985) ; 103(3): 1093-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17347387

RESUMO

During the past 20 yr, it has been well documented that exercise has a profound effect on the immune system. With the discovery that exercise provokes an increase in a number of cytokines, a possible link between skeletal muscle contractile activity and immune changes was established. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an "exercise factor," which could mediate some of the exercise-induced metabolic changes in other organs such as the liver and the adipose tissue. We suggest that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either paracrine or endocrine effects should be classified as "myokines." Since the discovery of interleukin (IL)-6 release from contracting skeletal muscle, evidence has accumulated that supports an effect of IL-6 on metabolism. We suggested that muscle-derived IL-6 fulfils the criteria of an exercise factor and that such classes of cytokines should be named "myokines." Interestingly, recent research demonstrates that skeletal muscles can produce and express cytokines belonging to distinctly different families. Thus skeletal muscle has the capacity to express several myokines. To date the list includes IL-6, IL-8, and IL-15, and contractile activity plays a role in regulating the expression of these cytokines in skeletal muscle. The present review focuses on muscle-derived cytokines, their regulation by exercise, and their possible roles in metabolism and skeletal muscle function and it discusses which cytokines should be classified as true myokines.


Assuntos
Citocinas/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Humanos , Interleucina-15/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo
15.
Sports Med ; 37(4-5): 416-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17465623

RESUMO

Marathoners are at an increased risk of developing upper respiratory tract infections (URTIs) following races and periods of hard training, which are associated with temporary changes in the immune system. The majority of the reported changes are decreases in function or concentration of certain immune cells. During this period of immune suppression, by some referred to as an 'open window' in immune function, it has been hypothesised that viruses and bacteria might gain a foothold, which would increase the risk of infections. In light of this, nutritional interventions that can enhance immune function and reduce the risk of URTIs have been sought. This paper focuses on the effect of glutamine, vitamin C, bovine colostrum and glucose. Although, some of these supplements can affect the physiological and immune changes associated with marathon racing, none of the supplements discussed have consistently been shown to reduce the risk of URTIs and therefore cannot be recommended for use as enhancers of immune function in marathon runners.


Assuntos
Infecções Respiratórias/imunologia , Infecções Respiratórias/prevenção & controle , Corrida/fisiologia , Ácido Ascórbico/imunologia , Colostro/imunologia , Dinamarca , Suplementos Nutricionais , Glucose/imunologia , Glutamina/imunologia , Humanos
16.
Sci Transl Med ; 8(334): 334ra54, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27075628

RESUMO

Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERα expression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERα knockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A-regulator of calcineurin 1-calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERα deficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERα in the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Homeostase/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteínas de Ligação ao Cálcio , Replicação do DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Dinaminas/metabolismo , Feminino , Deleção de Genes , Glucose/metabolismo , Humanos , Insulina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Biochem Biophys Rep ; 4: 342-350, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124223

RESUMO

Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56 U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA delivery across the muscle by increasing the number of plasmid DNA injections further enhanced transfection efficiency whereas increasing plasmid dose from 0.2 to 1.6 µg/g b.w. or vehicle volume had no effect. The optimized protocol resulted in ~80% (CI95%: 79-84%) transfected muscle fibers with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle.

18.
PLoS One ; 9(2): e87308, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586268

RESUMO

MiRNAs are potent intracellular posttranscriptional regulators and are also selectively secreted into the circulation in a cell-specific fashion. Global changes in miRNA expression in skeletal muscle in response to endurance exercise training have been reported. Therefore, our aim was to establish the miRNA signature in human plasma in response to acute exercise and chronic endurance training by utilizing a novel methodological approach. RNA was isolated from human plasma collected from young healthy men before and after an acute endurance exercise bout and following 12 weeks of endurance training. Global miRNA (742 miRNAs) measurements were performed as a screening to identify detectable miRNAs in plasma. Using customized qPCR panels we quantified the expression levels of miRNAs detected in the screening procedure (188 miRNAs). We demonstrate a dynamic regulation of circulating miRNA (ci-miRNA) levels following 0 hour (miR-106a, miR-221, miR-30b, miR-151-5p, let-7i, miR-146, miR-652 and miR-151-3p), 1 hour (miR-338-3p, miR-330-3p, miR-223, miR-139-5p and miR-143) and 3 hours (miR-1) after an acute exercise bout (P<0.00032). Where ci-miRNAs were all downregulated immediately after an acute exercise bout (0 hour) the 1 and 3 hour post exercise timepoints were followed by upregulations. In response to chronic training, we identified seven ci-miRNAs with decreased levels in plasma (miR-342-3p, let-7d, miR-766, miR-25, miR-148a, miR-185 and miR-21) and two miRNAs that were present at higher levels after the training period (miR-103 and miR-107) (P<0.00032). In conclusion, acute exercise and chronic endurance training, likely through specific mechanisms unique to each stimulus, robustly modify the miRNA signature of human plasma.


Assuntos
Exercício Físico/fisiologia , MicroRNAs/sangue , Resistência Física/fisiologia , Adulto , Regulação para Baixo , Humanos , Masculino , MicroRNAs/genética , Fatores de Tempo , Regulação para Cima
19.
Endocrine ; 45(2): 271-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23649460

RESUMO

Regular endurance exercise promotes metabolic and oxidative changes in skeletal muscle. Overexpression of interleukin-15 (IL-15) in mice exerts similar metabolic changes in muscle as seen with endurance exercise. Muscular IL-15 production has been shown to increase in mice after weeks of regular endurance running. With the present study we aimed to determine if muscular IL-15 production would increase in human male subjects following 12 weeks of endurance training. In two different studies we obtained plasma and muscle biopsies from young healthy subjects performing: (1) 12 weeks of ergometer cycling exercise five times per week with plasma and biopsies before and after the intervention, and (2) 3 h of ergometer cycling exercise with plasma and biopsies before and after the exercise bout and well into recovery. We measured changes in plasma IL-15, muscle IL-15 mRNA and IL-15 protein. Twelve weeks of regular endurance training induced a 40% increase in basal skeletal muscle IL-15 protein content (p < 0.01), but with no changes in either muscle IL-15 mRNA or plasma IL-15 levels. However, an acute bout of 3-h exercise did not show significant changes in muscle IL-15 or plasma IL-15 levels. The induction of muscle IL-15 protein in humans following a regular training period supports previous findings in mice and emphasizes the hypothesis of IL-15 taking part in skeletal muscle adaptation during training.


Assuntos
Exercício Físico/fisiologia , Interleucina-15/metabolismo , Músculo Esquelético/metabolismo , Resistência Física/fisiologia , Regulação para Cima/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Biópsia , Teste de Esforço , Humanos , Masculino , Músculo Esquelético/patologia , RNA Mensageiro/metabolismo , Fatores de Tempo
20.
J Appl Physiol (1985) ; 112(6): 990-1000, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22207723

RESUMO

Vitamin C and E supplementation has been shown to attenuate the acute exercise-induced increase in plasma interleukin-6 (IL-6) concentration. Here, we studied the effect of antioxidant vitamins on the regulation of IL-6 expression in muscle and the circulation in response to acute exercise before and after high-intensity endurance exercise training. Twenty-one young healthy men were allocated into either a vitamin (VT; vitamin C and E, n = 11) or a placebo (PL, n = 10) group. A 1-h acute bicycling exercise trial at 65% of maximal power output was performed before and after 12 wk of progressive endurance exercise training. In response to training, the acute exercise-induced IL-6 response was attenuated in PL (P < 0.02), but not in VT (P = 0.82). However, no clear difference between groups was observed (group × training: P = 0.13). Endurance exercise training also attenuated the acute exercise-induced increase in muscle-IL-6 mRNA in both groups. Oxidative stress, assessed by plasma protein carbonyls concentration, was overall higher in the VT compared with the PL group (group effect: P < 0.005). This was accompanied by a general increase in skeletal muscle mRNA expression of antioxidative enzymes, including catalase, copper-zinc superoxide dismutase, and glutathione peroxidase 1 mRNA expression in the VT group. However, skeletal muscle protein content of catalase, copper-zinc superoxide dismutase, or glutathione peroxidase 1 was not affected by training or supplementation. In conclusion, our results indicate that, although vitamin C and E supplementation may attenuate exercise-induced increases in plasma IL-6 there is no clear additive effect when combined with endurance training.


Assuntos
Ácido Ascórbico/administração & dosagem , Exercício Físico/fisiologia , Interleucina-6/metabolismo , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia , Vitamina E/administração & dosagem , Adulto , Antioxidantes/farmacologia , Ácido Ascórbico/sangue , Índice de Massa Corporal , Catalase/metabolismo , Suplementos Nutricionais , Método Duplo-Cego , Glutationa Peroxidase/metabolismo , Humanos , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/sangue , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-6/sangue , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Superóxido Dismutase/metabolismo , Vitamina E/sangue , Glutationa Peroxidase GPX1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA