Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 15(1): 4663, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821932

RESUMO

Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid ß precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.


Assuntos
Proteína do Gene 3 de Ativação de Linfócitos , alfa-Sinucleína , Animais , Feminino , Humanos , Masculino , Camundongos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ligação Proteica
2.
J Neurophysiol ; 110(11): 2627-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24047907

RESUMO

N-methyl-d-aspartate receptor (NMDAR)-mediated activity is required for whisker-related neural patterning in the rodent brain. Deletion of the essential NMDAR subunit NR1 gene in excitatory cortical neurons prevents whisker-specific barrel formation and impairs thalamocortical afferent patterning. We used electrophysiological and voltage-sensitive dye imaging methods to assess synaptic and sensory evoked cortical activity and immunohistochemistry to examine immediate early gene expression following whisker stimulation in cortex-specific NR1 knockout (CxNR1KO) mice. In mutant mice, layer IV neurons lacked NMDAR-mediated excitatory postsynaptic currents, and temporal summation of excitatory postsynaptic potentials (EPSPs) was impaired. Barrel neurons showed both phasic and tonic responses to whisker deflection. The averaged tonic response in CxNR1KO mice was significantly less than that in control mice due to impaired EPSP temporal summation. Electrophysiological estimation of the number of thalamic neurons innervating single barrel neurons indicated a significant increase in CxNR1KO mice. Similarly, voltage-sensitive dye optical signals in response to whisker stimulation were widespread. Immediate early gene expression following whisker stimulation also showed a diffuse expression pattern in the CxNR1KO cortex compared with whisker-specific expression patterns in controls. Thus, when NMDAR function is impaired, spatial discrimination of whisker inputs is severely compromised, and sensory stimulation evokes diffuse, topographically misaligned activity in the barrel cortex.


Assuntos
Potenciais Somatossensoriais Evocados , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Genes Precoces , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/fisiologia , Somação de Potenciais Pós-Sinápticos , Receptores de N-Metil-D-Aspartato/genética , Córtex Somatossensorial/metabolismo , Vibrissas/inervação , Vibrissas/fisiologia
3.
Neuron ; 110(15): 2422-2437.e9, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35654037

RESUMO

Parkinson's disease (PD) is mediated, in part, by intraneuronal accumulation of α-synuclein aggregates andsubsequent death of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc). Microglial hyperactivation of the NOD-like receptor protein 3 (NLRP3) inflammasome has been well-documented in various neurodegenerative diseases, including PD. We show here that loss of parkin activity in mouse and human DA neurons results in spontaneous neuronal NLRP3 inflammasome assembly, leading to DA neuron death. Parkin normally inhibits inflammasome priming by ubiquitinating and targeting NLRP3 for proteasomal degradation. Loss of parkin activity also contributes to the assembly of an active NLRP3 inflammasome complex via mitochondrial-derived reactive oxygen species (mitoROS) generation through the accumulation of another parkin ubiquitination substrate, ZNF746/PARIS. Inhibition of neuronal NLRP3 inflammasome assembly prevents degeneration of DA neurons in familial and sporadic PD models. Strategies aimed at limiting neuronal NLRP3 inflammasome activation hold promise as a disease-modifying therapy for PD.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Doença de Parkinson , Ubiquitina-Proteína Ligases , Animais , Neurônios Dopaminérgicos/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
J Neurochem ; 115(1): 112-22, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20633205

RESUMO

Chronic drug exposure induces alterations in gene expression profiles that are thought to underlie the development of drug addiction. The present study examined regulation of the Fos-family of transcription factors, specifically cFos, FosB, and ΔFosB, in striatal subregions during and after chronic intravenous cocaine administration in self-administering and yoked rats. We found that cFos, FosB, and ΔFosB exhibit regionally and temporally distinct expression patterns, with greater accumulation of ΔFosB protein in the nucleus accumbens (NAc) shell and core after chronic cocaine administration, whereas ΔFosB increases in the caudate-putamen (CPu) remained similar with either acute or chronic administration. In contrast, tolerance developed to cocaine-induced mRNA for ΔFosB in all three striatal subregions with chronic administration. Tolerance also developed to FosB expression, most notably in the NAc shell and CPu. Interestingly, tolerance to cocaine-induced cFos induction was dependent on volitional control of cocaine intake in ventral but not dorsal striatal regions, whereas regulation of FosB and ΔFosB was similar in cocaine self-administering and yoked animals. Thus, ΔFosB-mediated neuroadaptations in the CPu may occur earlier than previously thought with the initiation of intravenous cocaine use and, together with greater accumulation of ΔFosB in the NAc, could contribute to addiction-related increases in cocaine-seeking behavior.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/efeitos adversos , Cocaína/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neostriado/fisiologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Western Blotting , Relação Dose-Resposta a Droga , Injeções Intravenosas , Masculino , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Reforço Psicológico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Autoadministração , Abuso de Substâncias por Via Intravenosa
5.
J Neurotrauma ; 36(7): 1060-1079, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160201

RESUMO

In severe traumatic brain injury (TBI), contusions often are worsened by contusion expansion or hemorrhagic progression of contusion (HPC), which may double the original contusion volume and worsen outcome. In humans and rodents with contusion-TBI, sulfonylurea receptor 1 (SUR1) is upregulated in microvessels and astrocytes, and in rodent models, blockade of SUR1 with glibenclamide reduces HPC. SUR1 does not function by itself, but must co-assemble with either KIR6.2 or transient receptor potential cation channel subfamily M member 4 (TRPM4) to form KATP (SUR1-KIR6.2) or SUR1-TRPM4 channels, with the two having opposite effects on membrane potential. Both KIR6.2 and TRPM4 are reportedly upregulated in TBI, especially in astrocytes, but the identity and function of SUR1-regulated channels post-TBI is unknown. Here, we analyzed human and rat brain tissues after contusion-TBI to characterize SUR1, TRPM4, and KIR6.2 expression, and in the rat model, to examine the effects on HPC of inhibiting expression of the three subunits using intravenous antisense oligodeoxynucleotides (AS-ODN). Glial fibrillary acidic protein (GFAP) immunoreactivity was used to operationally define core versus penumbral tissues. In humans and rats, GFAP-negative core tissues contained microvessels that expressed SUR1 and TRPM4, whereas GFAP-positive penumbral tissues contained astrocytes that expressed all three subunits. Förster resonance energy transfer imaging demonstrated SUR1-TRPM4 heteromers in endothelium, and SUR1-TRPM4 and SUR1-KIR6.2 heteromers in astrocytes. In rats, glibenclamide as well as AS-ODN targeting SUR1 and TRPM4, but not KIR6.2, reduced HPC at 24 h post-TBI. Our findings demonstrate upregulation of SUR1-TRPM4 and KATP after contusion-TBI, identify SUR1-TRPM4 as the primary molecular mechanism that accounts for HPC, and indicate that SUR1-TRPM4 is a crucial target of glibenclamide.


Assuntos
Contusão Encefálica/metabolismo , Hemorragias Intracranianas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/metabolismo , Canais de Cátion TRPM/metabolismo , Adulto , Idoso , Animais , Encéfalo/metabolismo , Contusão Encefálica/complicações , Progressão da Doença , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Hemorragias Intracranianas/etiologia , Masculino , Pessoa de Meia-Idade , Ratos , Regulação para Cima
6.
J Neurosci Methods ; 281: 1-6, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28219725

RESUMO

BACKGROUND: Brain imaging methods are continually improving. Imaging of the cerebral cortex is widely used in both animal experiments and charting human brain function in health and disease. Among the animal models, the rodent cerebral cortex has been widely used because of patterned neural representation of the whiskers on the snout and relative ease of activating cortical tissue with whisker stimulation. NEW METHOD: We tested a new planar solid-state oxygen sensor comprising a polymeric film with a phosphorescent oxygen-sensitive coating on the working side, to monitor dynamics of oxygen metabolism in the cerebral cortex following sensory stimulation. RESULTS: Sensory stimulation led to changes in oxygenation and deoxygenation processes of activated areas in the barrel cortex. We demonstrate the possibility of dynamic mapping of relative changes in oxygenation in live mouse brain tissue with such a sensor. COMPARISON WITH EXISTING METHOD: Oxygenation-based functional magnetic resonance imaging (fMRI) is very effective method for functional brain mapping but have high costs and limited spatial resolution. Optical imaging of intrinsic signal (IOS) does not provide the required sensitivity, and voltage-sensitive dye optical imaging (VSDi) has limited applicability due to significant toxicity of the voltage-sensitive dye. Our planar solid-state oxygen sensor imaging approach circumvents these limitations, providing a simple optical contrast agent with low toxicity and rapid application. CONCLUSIONS: The planar solid-state oxygen sensor described here can be used as a tool in visualization and real-time analysis of sensory-evoked neural activity in vivo. Further, this approach allows visualization of local neural activity with high temporal and spatial resolution.


Assuntos
Imagem Óptica/instrumentação , Oxigênio/análise , Córtex Somatossensorial/química , Anestésicos Intravenosos/farmacologia , Anestésicos Intravenosos/toxicidade , Animais , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Neuroimagem Funcional/instrumentação , Neuroimagem Funcional/métodos , Masculino , Camundongos , Imagem Óptica/métodos , Estimulação Física , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Uretana/farmacologia , Uretana/toxicidade , Vibrissas/fisiologia
7.
Sci Rep ; 5: 17325, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26612326

RESUMO

The whisker system of rodents is an excellent model to study peripherally evoked neural activity in the brain. Discrete neural modules represent each whisker in the somatosensory cortex ("barrels"), thalamus ("barreloids"), and brain stem ("barrelettes"). Stimulation of a single whisker evokes neural activity sequentially in its corresponding barrelette, barreloid, and barrel. Conventional optical imaging of functional activation in the brain is limited to surface structures such as the cerebral cortex. To access subcortical structures and image sensory-evoked neural activity, we designed a needle-based optical system using gradient-index (GRIN) rod lens. We performed voltage-sensitive dye imaging (VSDi) with GRIN rod lens to visualize neural activity evoked in the thalamic barreloids by deflection of whiskers in vivo. We stimulated several whiskers together to determine the sensitivity of our approach in differentiating between different barreloid responses. We also carried out stimulation of different whiskers at different times. Finally, we used muscimol in the barrel cortex to silence the corticothalamic inputs while imaging in the thalamus. Our results show that it is possible to obtain functional maps of the sensory periphery in deep brain structures such as the thalamic barreloids. Our approach can be broadly applicable to functional imaging of other core brain structures.


Assuntos
Tronco Encefálico/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Vibrissas/fisiologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Corantes , Estimulação Elétrica , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Injeções Intraventriculares , Masculino , Camundongos , Muscimol/farmacologia , Córtex Somatossensorial/efeitos dos fármacos , Técnicas Estereotáxicas
8.
eNeuro ; 1(1)2014.
Artigo em Inglês | MEDLINE | ID: mdl-26464960

RESUMO

Cover FigureRegion-specific adenylyl cyclase 1 (AC1) loss of function differentially affects both patterning and sensorimotor behaviors in mice. AC1 is expressed at all levels of the somatosensory pathway and plays a major role in refinement and patterning of topographic sensory maps. Cortex-specific AC1 loss of function (CxAC1KO mice) does not affect barrel patterning and activation of specific barrels corresponding to stimulated whiskers and does not impair sensorimotor behaviors. While global (AC1KO) and thalamus-specific (ThAC1KO) AC1 loss of function leads to absence of barrel patterns, selective whisker stimulation activates topographically aligned cortical loci. Despite functional topography of the whisker-barrel cortex, sensorimotor and social behaviors are impaired, indicating the importance of patterning of topographical sensory maps in the neocortex. Adenylate cyclase type I (AC1) is primarily, and, abundantly, expressed in the brain. Intracellular calcium/calmodulin increases regulate AC1 in an activity-dependent manner. Upon stimulation, AC1 produces cAMP and it is involved in the patterning and the refinement of neural circuits. In mice, spontaneous mutations or targeted deletion of the Adcy1 gene, which encodes AC1, resulted in neuronal pattern formation defects. Neural modules in the primary somatosensory (SI) cortex, the barrels, which represent the topographic distribution of the whiskers on the snout, failed to form (Welker et al., 1996; Abdel-Majid et al., 1998). Cortex- or thalamus-specific Adcy1 deletions led to different cortical pattern phenotypes, with thalamus-specific disruption phenotype being more severe (Iwasato et al., 2008; Suzuki et al., 2013). Despite the absence of barrels in the "barrelless"/Adcy1 null mice, thalamocortical terminal bouton density and activation of cortical zones following whisker stimulation were roughly topographic (Abdel-Majid et al., 1998; Gheorghita et al., 2006). To what extent does patterning of the cortical somatosensory body map play a role in sensorimotor behaviors? In this study, we tested mice with global, cortical, or thalamic loss of AC1 function in a battery of sensorimotor and social behavior tests and compared them to mice with all of the whiskers clipped. Contrary to intuitive expectations that any region-specific or global disruption of the AC1 function would lead to similar behavioral phenotypes, we found significant differences in the degree of impairment between these strains.

9.
eNeuro ; 1(1)2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26023682

RESUMO

Adenylate cyclase type I (AC1) is primarily, and, abundantly, expressed in the brain. Intracellular calcium/ calmodulin increases regulate AC1 in an activity-dependent manner. Upon stimulation, AC1 produces cAMP and it is involved in the patterning and the refinement of neural circuits. In mice, spontaneous mutations or targeted deletion of the Adcy1 gene, which encodes AC1, resulted in neuronal pattern formation defects. Neural modules in the primary somatosensory (SI) cortex, the barrels, which represent the topographic distribution of the whiskers on the snout, failed to form (Welker et al., 1996; Abdel-Majid et al., 1998). Cortex- or thalamus-specific Adcy1 deletions led to different cortical pattern phenotypes, with thalamus-specific disruption phenotype being more severe (Iwasato et al., 2008; Suzuki et al., 2013). Despite the absence of barrels in the "barrelless"/Adcy1 null mice, thalamocortical terminal bouton density and activation of cortical zones following whisker stimulation were roughly topographic (Abdel-Majid et al., 1998; Gheorghita et al., 2006). To what extent does patterning of the cortical somatosensory body map play a role in sensorimotor behaviors? In this study, we tested mice with global, cortical, or thalamic loss of AC1 function in a battery of sensorimotor and social behavior tests and compared them to mice with all of the whiskers clipped. Contrary to intuitive expectations that any region-specific or global disruption of the AC1 function would lead to similar behavioral phenotypes, we found significant differences in the degree of impairment between these strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA