Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(11): e1011655, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011273

RESUMO

Generative models of protein sequence families are an important tool in the repertoire of protein scientists and engineers alike. However, state-of-the-art generative approaches face inference, accuracy, and overfitting- related obstacles when modeling moderately sized to large proteins and/or protein families with low sequence coverage. Here, we present a simple to learn, tunable, and accurate generative model, GENERALIST: GENERAtive nonLInear tenSor-factorizaTion for protein sequences. GENERALIST accurately captures several high order summary statistics of amino acid covariation. GENERALIST also predicts conservative local optimal sequences which are likely to fold in stable 3D structure. Importantly, unlike current methods, the density of sequences in GENERALIST-modeled sequence ensembles closely resembles the corresponding natural ensembles. Finally, GENERALIST embeds protein sequences in an informative latent space. GENERALIST will be an important tool to study protein sequence variability.


Assuntos
Aminoácidos , Proteínas , Proteínas/química , Sequência de Aminoácidos
2.
Elife ; 122024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38293960

RESUMO

Channel capacity of signaling networks quantifies their fidelity in sensing extracellular inputs. Low estimates of channel capacities for several mammalian signaling networks suggest that cells can barely detect the presence/absence of environmental signals. However, given the extensive heterogeneity and temporal stability of cell state variables, we hypothesize that the sensing ability itself may depend on the state of the cells. In this work, we present an information-theoretic framework to quantify the distribution of sensing abilities from single-cell data. Using data on two mammalian pathways, we show that sensing abilities are widely distributed in the population and most cells achieve better resolution of inputs compared to an 'average cell'. We verify these predictions using live-cell imaging data on the IGFR/FoxO pathway. Importantly, we identify cell state variables that correlate with cells' sensing abilities. This information-theoretic framework will significantly improve our understanding of how cells sense in their environment.


Assuntos
Proteínas , Transdução de Sinais , Animais , Mamíferos
3.
bioRxiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36945613

RESUMO

Channel capacity of signaling networks quantifies their fidelity in sensing extracellular inputs. Low estimates of channel capacities for several mammalian signaling networks suggest that cells can barely detect the presence/absence of environmental signals. However, given the extensive heterogeneity and temporal stability of cell state variables, we hypothesize that the sensing ability itself may depend on the state of the cells. In this work, we present an information theoretic framework to quantify the distribution of sensing abilities from single cell data. Using data on two mammalian pathways, we show that sensing abilities are widely distributed in the population and most cells achieve better resolution of inputs compared to an " average cell ". We verify these predictions using live cell imaging data on the IGFR/FoxO pathway. Importantly, we identify cell state variables that correlate with cells' sensing abilities. This information theoretic framework will significantly improve our understanding of how cells sense in their environment.

4.
Sci Rep ; 13(1): 19230, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932382

RESUMO

Many quorum sensing microbes produce more than one chemical signal and detect them using interconnected pathways that crosstalk with each other. While there are many hypotheses for the advantages of sensing multiple signals, the prevalence and functional significance of crosstalk between pathways are much less understood. We explore the effect of intracellular signal crosstalk using a simple model that captures key features of typical quorum sensing pathways: multiple pathways in a hierarchical configuration, operating with positive feedback, with crosstalk at the receptor and promoter levels. We find that crosstalk enables activation or inhibition of one output by the non-cognate signal, broadens the dynamic range of the outputs, and allows one pathway to modulate the feedback circuit of the other. Our findings show how crosstalk between quorum sensing pathways can be viewed not as a detriment to the processing of information, but as a mechanism that enhances the functional range of the full regulatory system. When positive feedback systems are coupled through crosstalk, several new modes of activation or deactivation become possible.


Assuntos
Percepção de Quorum , Transdução de Sinais , Percepção de Quorum/fisiologia , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA