RESUMO
In breast cancer, the currently approved anti-receptor tyrosine-protein kinase erbB-2 (HER2) therapies do not fully meet the expected clinical goals due to therapy resistance. Identifying alternative HER2-related therapeutic targets could offer a means to overcome these resistance mechanisms. We have previously demonstrated that an endosomal sorting protein, sortilin-related receptor (SorLA), regulates the traffic and signaling of HER2 and HER3, thus promoting resistance to HER2-targeted therapy in breast cancer. This study aims to assess the feasibility of targeting SorLA using a monoclonal antibody. Our results demonstrate that anti-SorLA antibody (SorLA ab) alters the resistance of breast cancer cells to HER2 monoclonal antibody trastuzumab in vitro and in ovo. We found that SorLA ab and trastuzumab combination therapy also inhibits tumor cell proliferation and tumor cell density in a mouse xenograft model of HER2-positive breast cancer. In addition, SorLA ab inhibits the proliferation of breast cancer patient-derived explant three-dimensional cultures. These results provide, for the first time, proof of principle that SorLA is a druggable target in breast cancer.
Assuntos
Antineoplásicos , Neoplasias da Mama , Proteínas Adaptadoras de Transporte Vesicular , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Receptor ErbB-2/metabolismo , Receptor ErbB-3 , Trastuzumab/farmacologiaRESUMO
MiRNAs have recently become a subject of great interest within cancers and especially colorectal cancers in diagnosis, prognosis, and therapy decisions; herein we review the current literature focusing on miRNAs in colorectal cancers, and we discuss future challenges to use this tool on a daily clinical basis. In liquid biopsies, miRNAs seem easily accessible and can give important information toward each step of the management of colorectal cancers. However, it is now necessary to highlight the most sensitive and specific miRNAs for each goal thanks to multicentric prospective studies. Conclusions: by their diversity and the feasibility of their use, miRNAs are getting part of the armamentarium of healthcare management of colorectal cancers.
RESUMO
Current evidence indicates that resistance to the tyrosine kinase-type cell surface receptor (HER2)-targeted therapies is frequently associated with HER3 and active signaling via HER2-HER3 dimers, particularly in the context of breast cancer. Thus, understanding the response to HER2-HER3 signaling and the regulation of the dimer is essential to decipher therapy relapse mechanisms. Here, we investigate a bidirectional relationship between HER2-HER3 signaling and a type-1 transmembrane sorting receptor, sortilin-related receptor (SorLA; SORL1). We demonstrate that heregulin-mediated signaling supports SorLA transcription downstream of the mitogen-activated protein kinase pathway. In addition, we demonstrate that SorLA interacts directly with HER3, forming a trimeric complex with HER2 and HER3 to attenuate lysosomal degradation of the dimer in a Ras-related protein Rab4-dependent manner. In line with a role for SorLA in supporting the stability of the HER2 and HER3 receptors, loss of SorLA compromised heregulin-induced cell proliferation and sensitized metastatic anti-HER2 therapy-resistant breast cancer cells to neratinib in cancer spheroids in vitro and in vivo in a zebrafish brain xenograft model.
Assuntos
Neoplasias da Mama/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Xenoenxertos , Humanos , Camundongos , Neuregulina-1/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Peixe-Zebra , Proteínas rab4 de Ligação ao GTP/genéticaRESUMO
Spatially controlled, cargo-specific endocytosis is essential for development, tissue homeostasis and cancer invasion. Unlike cargo-specific clathrin-mediated endocytosis, the clathrin- and dynamin-independent endocytic pathway (CLIC-GEEC, CG pathway) is considered a bulk internalization route for the fluid phase, glycosylated membrane proteins and lipids. While the core molecular players of CG-endocytosis have been recently defined, evidence of cargo-specific adaptors or selective uptake of proteins for the pathway are lacking. Here we identify the actin-binding protein Swiprosin-1 (Swip1, EFHD2) as a cargo-specific adaptor for CG-endocytosis. Swip1 couples active Rab21-associated integrins with key components of the CG-endocytic machinery-Arf1, IRSp53 and actin-and is critical for integrin endocytosis. Through this function, Swip1 supports integrin-dependent cancer-cell migration and invasion, and is a negative prognostic marker in breast cancer. Our results demonstrate a previously unknown cargo selectivity for the CG pathway and a role for specific adaptors in recruitment into this endocytic route.
Assuntos
Neoplasias da Mama/patologia , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose , Integrina beta1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Actinas/metabolismo , Transporte Biológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Movimento Celular , Clatrina/genética , Dinaminas/genética , Feminino , Humanos , Integrina beta1/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas rab de Ligação ao GTP/genéticaRESUMO
The human epidermal growth factor receptor 2 (HER2) is an oncogene targeted by several kinase inhibitors and therapeutic antibodies. While the endosomal trafficking of many other receptor tyrosine kinases is known to regulate their oncogenic signalling, the prevailing view on HER2 is that this receptor is predominantly retained on the cell surface. Here, we find that sortilin-related receptor 1 (SORLA; SORL1) co-precipitates with HER2 in cancer cells and regulates HER2 subcellular distribution by promoting recycling of the endosomal receptor back to the plasma membrane. SORLA protein levels in cancer cell lines and bladder cancers correlates with HER2 levels. Depletion of SORLA triggers HER2 targeting to late endosomal/lysosomal compartments and impairs HER2-driven signalling and in vivo tumour growth. SORLA silencing also disrupts normal lysosome function and sensitizes anti-HER2 therapy sensitive and resistant cancer cells to lysosome-targeting cationic amphiphilic drugs. These findings reveal potentially important SORLA-dependent endosomal trafficking-linked vulnerabilities in HER2-driven cancers.
Assuntos
Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Carcinoma de Células de Transição/genética , Membrana Celular/metabolismo , Endossomos/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Receptor ErbB-2/metabolismo , Neoplasias da Bexiga Urinária/genética , Animais , Neoplasias da Mama/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma de Células de Transição/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Lisossomos/metabolismo , Células MCF-7 , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Transporte Proteico , Neoplasias da Bexiga Urinária/metabolismoRESUMO
Tyrosine kinase receptors such as the epidermal growth factor receptor (EGFR) transduce information from the microenvironment into the cell and activate homeostatic signaling pathways. Internalization and degradation of EGFR after ligand binding limits the intensity of proliferative signaling, thereby helping to maintain cell integrity. In cancer cells, deregulation of EGFR trafficking has a variety of effects on tumor progression. Here we report that sortilin is a key regulator of EGFR internalization. Loss of sortilin in tumor cells promoted cell proliferation by sustaining EGFR signaling at the cell surface, ultimately accelerating tumor growth. In lung cancer patients, sortilin expression decreased with increased pathologic grade, and expression of sortilin was strongly correlated with survival, especially in patients with high EGFR expression. Sortilin is therefore a regulator of EGFR intracellular trafficking that promotes receptor internalization and limits signaling, which in turn impacts tumor growth.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Membrana Celular/metabolismo , Fator de Crescimento Epidérmico , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/diagnóstico , Camundongos Nus , PrognósticoRESUMO
Lung cancer is the most common cause of cancer- related death worldwide, causing over 1.2 million deaths each year. Non-small-cell lung cancer (NSCLC) consists of a group of malignancies that are pathologically and molecularly diverse but that are all characterised by a poor prognosis. Survival rates for lung cancer patients have improved very slowly and only to a modest degree owing partly to poor funding for research into this malignancy and stigma associated with smoking, as well as relative chemo-resistance. However, in recent years, NSCLC has become an exemplar for precision medicine, mainly following development of drugs targeting the receptors of epidermal growth factor and anaplastic lymphoma kinase. While epidermal growth factor receptor and anaplastic lymphoma kinase inhibitors are only applicable to a minority of patients and benefits are almost invariably short-lived, current studies indicate that at least 50% of patients with NSCLC have a targetable mutation. With a growing armamentarium of inhibitors against these targets in development, there is a hope that a greater proportion of patients will benefit from precision medicine and that such benefits will be sustained. However, there remain significant challenges in the development of precision medicine in NSCLC. These include: identification and validation of new targets; ensuring biopsies are fit for purpose; tumour heterogeneity; requirements for serial tumour assessments; and not least cost. In this review, we will discuss the current status of precision medicine in NSCLC as well as how basic and translational research are paving the way towards overcoming the above challenges. In addition, we will pay attention to clinical strategies in respect to liquid biopsies and the potential use of extracellular vesicles such as exosomes in cancer therapeutics.
Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Medicina de Precisão , Quinase do Linfoma Anaplásico , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Genes ras/genética , Humanos , Imunoterapia , Masculino , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ret/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genéticaRESUMO
The neurotensin receptor-3 also known as sortilin was the first member of the small family of vacuolar protein sorting 10 protein domain (Vps10p) discovered two decades ago in the human brain. The expression of sortilin is not confined to the nervous system but sortilin is ubiquitously expressed in many tissues. Sortilin has multiple roles in the cell as a receptor or a co-receptor, in protein transport of many interacting partners to the plasma membrane, to the endocytic pathway and to the lysosomes for protein degradation. Sortilin could be considered as the cells own shuttle system. In many human diseases including neurological diseases and cancer, sortilin expression has been shown to be deregulated. In addition, some studies have highlighted that the extracellular domain of sortilin is shedded into the culture media by an unknown mechanism. Sortilin can be released in exosomes and appears to control some mechanisms of exosome biogenesis. In lung cancer cells, sortilin can associate with two receptor tyrosine kinase receptors called the TES complex found in exosomes. Exosomes carrying the TES complex can convey a microenvironment control through the activation of ErbB signaling pathways and the release of angiogenic factors. Deregulation of sortilin function is now emerging to be implicated in four major human diseases- cardiovascular disease, Type 2 diabetes mellitus, Alzheimer disease and cancer.