Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 632(8026): 762-767, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39169246

RESUMO

The photoelectric effect is not truly instantaneous but exhibits attosecond delays that can reveal complex molecular dynamics1-7. Sub-femtosecond-duration light pulses provide the requisite tools to resolve the dynamics of photoionization8-12. Accordingly, the past decade has produced a large volume of work on photoionization delays following single-photon absorption of an extreme ultraviolet photon. However, the measurement of time-resolved core-level photoionization remained out of reach. The required X-ray photon energies needed for core-level photoionization were not available with attosecond tabletop sources. Here we report measurements of the X-ray photoemission delay of core-level electrons, with unexpectedly large delays, ranging up to 700 as in NO near the oxygen K-shell threshold. These measurements exploit attosecond soft X-ray pulses from a free-electron laser to scan across the entire region near the K-shell threshold. Furthermore, we find that the delay spectrum is richly modulated, suggesting several contributions, including transient trapping of the photoelectron owing to shape resonances, collisions with the Auger-Meitner electron that is emitted in the rapid non-radiative relaxation of the molecule and multi-electron scattering effects. The results demonstrate how X-ray attosecond experiments, supported by comprehensive theoretical modelling, can unravel the complex correlated dynamics of core-level photoionization.

2.
J Synchrotron Radiat ; 31(Pt 5): 1257-1263, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39042580

RESUMO

The differentially pumped rare-gas filter at the end of the VUV beamline of the Swiss Light Source has been adapted to house a windowless absorption cell for gases. Absorption spectra can be recorded from 7 eV to up to 21 eV photon energies routinely, as shown by a new water and nitrous oxide absorption spectrum. By and large, the spectra agree with previously published ones both in terms of resonance energies and absorption cross sections, but that of N2O exhibits a small shift in the {\tilde{\bf D}} band and tentative fine structures that have not yet been fully described. This setup will facilitate the measurement of absorption spectra in the VUV above the absorption edge of LiF and MgF2 windows. It will also allow us to carry out condensed-phase measurements on thin liquid sheets and solid films. Further development options are discussed, including the recording of temperature-dependent absorption spectra, a stationary gas cell for calibration measurements, and the improvement of the photon energy resolution.

3.
J Synchrotron Radiat ; 31(Pt 5): 1134-1145, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39120914

RESUMO

The ability to freely control the polarization of X-rays enables measurement techniques relying on circular or linear dichroism, which have become indispensable tools for characterizing the properties of chiral molecules or magnetic structures. Therefore, the demand for polarization control in X-ray free-electron lasers is increasing to enable polarization-sensitive dynamical studies on ultrafast time scales. The soft X-ray branch Athos of SwissFEL was designed with the aim of providing freely adjustable and arbitrary polarization by building its undulator solely from modules of the novel Apple X type. In this paper, the magnetic model of the linear inclined and circular Apple X polarization schemes are studied. The polarization is characterized by measuring the angular electron emission distributions of helium for various polarizations using cold target recoil ion momentum spectroscopy. The generation of fully linear polarized light of arbitrary angle, as well as elliptical polarizations of varying degree, are demonstrated.

4.
J Synchrotron Radiat ; 30(Pt 4): 717-722, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37255024

RESUMO

Gas attenuators are important devices providing accurate variation of photon intensity for soft X-ray beamlines. In the SwissFEL ATHOS beamline front-end the space is very limited and an innovative approach has been taken to provide attenuation of three orders of magnitude up to an energy of 1200 eV. Additive manufacturing of a differential pumping system vacuum manifold allowed a triple pumping stage to be realized in a space of less than half a meter. Measurements have shown that the response of the device is as expected from theoretical calculations.


Assuntos
Fótons , Síncrotrons
5.
Chimia (Aarau) ; 76(6): 529-537, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069722

RESUMO

Ultrafast single-particle imaging with intense x-ray pulses from free-electron laser sources provides a new approach for visualizing structure and dynamics on the nanoscale. After a short introduction to the novel free-electron laser sources and methods, we highlight selected applications and discuss how ultrafast imaging flourishes from method development to early applications in physics and biology to opportunities for chemical sciences.

6.
J Am Chem Soc ; 143(24): 9048-9059, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34075753

RESUMO

The development of next-generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evident for CsPbBr3 perovskites that the Pb-Br framework flexibility plays a key role in their light-activated functionality, the corresponding local structural rearrangement has not yet been unambiguously identified. In this work, we demonstrate that the photoinduced lattice changes in the system are due to a specific polaronic distortion, associated with the activation of a longitudinal optical phonon mode at 18 meV by electron-phonon coupling, and we quantify the associated structural changes with atomic-level precision. Key to this achievement is the combination of time-resolved and temperature-dependent studies at Br K and Pb L3 X-ray absorption edges with refined ab initio simulations, which fully account for the screened core-hole final state effects on the X-ray absorption spectra. From the temporal kinetics, we show that carrier recombination reversibly unlocks the structural deformation at both Br and Pb sites. The comparison with the temperature-dependent XAS results rules out thermal effects as the primary source of distortion of the Pb-Br bonding motif during photoexcitation. Our work provides a comprehensive description of the CsPbBr3 perovskites' photophysics, offering novel insights on the light-induced response of the system and its exceptional optoelectronic properties.

7.
J Chem Phys ; 155(3): 034201, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34293898

RESUMO

Two-dimensional Fourier transform spectroscopy is a promising technique to study ultrafast molecular dynamics. Similar to transient absorption spectroscopy, a more complete picture of the dynamics requires broadband laser pulses to observe transient changes over a large enough bandwidth, exceeding the inhomogeneous width of electronic transitions, as well as the separation between the electronic or vibronic transitions of interest. Here, we present visible broadband 2D spectra of a series of dye molecules and report vibrational coherences with frequencies up to ∼1400 cm-1 that were obtained after improvements to our existing two-dimensional Fourier transform setup [Al Haddad et al., Opt. Lett. 40, 312-315 (2015)]. The experiment uses white light from a hollow core fiber, allowing us to acquire 2D spectra with a bandwidth of 200 nm, in a range between 500 and 800 nm, and with a temporal resolution of 10-15 fs. 2D spectra of nile blue, rhodamine 800, terylene diimide, and pinacyanol iodide show vibronic spectral features with at least one vibrational mode and reveal information about structural motion via coherent oscillations of the 2D signals during the population time. For the case of pinacyanol iodide, these observations are complemented by its Raman spectrum, as well as the calculated Raman activity at the ground- and excited-state geometry.

8.
Phys Rev Lett ; 125(7): 073203, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857563

RESUMO

Free-electron lasers provide a source of x-ray pulses short enough and intense enough to drive nonlinearities in molecular systems. Impulsive interactions driven by these x-ray pulses provide a way to create and probe valence electron motions with high temporal and spatial resolution. Observing these electronic motions is crucial to understand the role of electronic coherence in chemical processes. A simple nonlinear technique for probing electronic motion, impulsive stimulated x-ray Raman scattering (ISXRS), involves a single impulsive interaction to produce a coherent superposition of electronic states. We demonstrate electronic population transfer via ISXRS using broad bandwidth (5.5 eV full width at half maximum) attosecond x-ray pulses produced by the Linac Coherent Light Source. The impulsive excitation is resonantly enhanced by the oxygen 1s→2π^{*} resonance of nitric oxide (NO), and excited state neutral molecules are probed with a time-delayed UV laser pulse.

9.
Phys Chem Chem Phys ; 22(5): 2704-2712, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31793561

RESUMO

The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.

10.
J Synchrotron Radiat ; 26(Pt 6): 1956-1966, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721741

RESUMO

The full radiation from the first harmonic of a synchrotron undulator (between 5 and 12 keV) at the Advanced Photon Source is microfocused using a stack of beryllium compound refractive lenses onto a fast-moving liquid jet and overlapped with a high-repetition-rate optical laser. This micro-focused geometry is used to perform efficient nonresonant X-ray emission spectroscopy on transient species using a dispersive spectrometer geometry. The overall usable flux achieved on target is above 1015 photons s-1 at 8 keV, enabling photoexcited systems in the liquid phase to be tracked with time resolutions from tens of picoseconds to microseconds, and using the full emission spectrum, including the weak valence-to-core signal that is sensitive to chemically relevant electronic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA