Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Altern Med ; 17(1): 359, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28693595

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by continuous hyperglycemia associated with insulin resistance and /or reduced insulin secretion. There is an emerging trend regarding the use of medicinal plants for the treatment of diabetes mellitus. Melicope lunu-ankenda (ML) is one of the Melicope species belonging to the family Rutaceae. In traditional medicines, its leaves and flowers are known to exhibit prodigious health benefits. The present study aimed at investigating anti-diabetic effect of Melicope lunu-ankenda (ML) leaves extract. METHODS: In this study, anti-diabetic effect of ML extract is investigated in vivo to evaluate the biochemical changes, potential serum biomarkers and alterations in metabolic pathways pertaining to the treatment of HFD/STZ induced diabetic rats with ML extract using 1H NMR based metabolomics approach. Type 2 diabetic rats were treated with different doses (200 and 400 mg/kg BW) of Melicope lunu-ankenda leaf extract for 8 weeks, and serum samples were examined for clinical biochemistry. The metabolomics study of serum was also carried out using 1H NMR spectroscopy in combination with multivariate data analysis to explore differentiating serum metabolites and altered metabolic pathways. RESULTS: The ML leaf extract (400 mg/kg BW) treatment significantly increased insulin level and insulin sensitivity of obese diabetic rats, with concomitant decrease in glucose level and insulin resistance. Significant reduction in total triglyceride, cholesterol and low density lipoprotein was also observed after treatment. Interestingly, there was a significant increase in high density lipoprotein of the treated rats. A decrease in renal injury markers and activities of liver enzymes was also observed. Moreover, metabolomics studies clearly demonstrated that, ML extract significantly ameliorated the disturbance in glucose metabolism, tricarboxylic acid cycle, lipid metabolism, and amino acid metabolism. CONCLUSION: ML leaf extract exhibits potent antidiabetic properties, hence could be a useful and affordable alternative option for the management of T2DM.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Lipídeos/sangue , Fitoterapia , Rutaceae/química , Animais , HDL-Colesterol/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/etiologia , Hipoglicemiantes/farmacologia , Insulina/sangue , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Metabolômica , Obesidade/complicações , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley , Triglicerídeos/sangue
2.
J Food Sci ; 81(5): C1080-90, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27074520

RESUMO

Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu-ankenda (ML) ethanolic extracts were evaluated using inhibition of α-glucosidase and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance ((1) H NMR) and ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α-glucosidase enzyme (IC50 of 37 µg/mL) and DPPH scavenging activity (IC50 of 48 µg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using (1) H-NMR-based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various (1) H-NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in combinational therapy.


Assuntos
Antioxidantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Rutaceae/química , alfa-Glucosidases/metabolismo , Animais , Antioxidantes/análise , Compostos de Bifenilo/metabolismo , Diabetes Mellitus/enzimologia , Inibidores de Glicosídeo Hidrolases/análise , Hipoglicemiantes/análise , Masculino , Picratos/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , alfa-Glucosidases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA