Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(7): 1563-1571, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36780335

RESUMO

5-Azidomethyl-2'-deoxyuridine (5-AmdU, 1) has been successfully employed for the metabolic labeling of DNA and fluorescent imaging of live cells. 5-AmdU also demonstrated significant radiosensitization in breast cancer cells via site-specific nitrogen-centered radical (π-aminyl (U-5-CH2-NH•), 2, and σ-iminyl (U-5-CH═N•), 3) formation. This work shows that these nitrogen-centered radicals are not formed via the reduction of the azido group in 6-azidomethyluridine (6-AmU, 4). Radical assignments were performed using electron spin resonance (ESR) in supercooled solutions, pulse radiolysis in aqueous solutions, and theoretical (DFT) calculations. Radiation-produced electron addition to 4 leads to the facile N3- loss, forming a stable neutral C-centered allylic radical (U-6-CH2•, 5) through dissociative electron attachment (DEA) via the transient negative ion, TNI (U-6-CH2-N3•-), in agreement with DFT calculations. In contrast, TNI (U-5-CH2-N3•-) of 1, via facile N2 loss (DEA) and protonation from the surrounding water, forms radical 2. Subsequently, 2 undergoes rapid H-atom abstraction from 1 and produces the metastable intermediate α-azidoalkyl radical (U-5-CH•-N3). U-5-CH•-N3 converts facilely to radical 3. N3- loss from U-6-CH2-N3•- is thermodynamically controlled, whereas N2 loss from U-5-CH2-N3•- is dictated by protonation from the surrounding waters and resonance conjugation of the azidomethyl side chain at C5 with the pyrimidine ring.


Assuntos
Nitrogênio , Nucleosídeos , Nitrogênio/química , Azidas , Elétrons , Espectroscopia de Ressonância de Spin Eletrônica , Água/química , Radicais Livres/química
2.
J Phys Chem B ; 124(50): 11357-11370, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33270461

RESUMO

In this work, electron-induced site-specific formation of neutral π-type aminyl radicals (RNH·) and their reactions with pyrimidine nucleoside analogs azidolabeled at various positions in the sugar moiety, e.g., at 2'-, 3'-, 4'-, and 5'- sites along with a model compound 3-azido-1-propanol (3AZPrOH), were investigated. Electron paramagnetic resonance (EPR) studies confirmed the site and mechanism of RNH· formation via dissociative electron attachment-mediated loss of N2 and subsequent facile protonation from the solvent employing the 15N-labeled azido group, deuterations at specific sites in the sugar and base, and changing the solvent from H2O to D2O. Reactions of RNH· were investigated employing EPR by warming these samples from 77 K to ca. 170 K. RNH· at a primary carbon site (5'-azido-2',5'-dideoxyuridine, 3AZPrOH) facilely converted to a σ-type iminyl radical (R═N·) via a bimolecular H-atom abstraction forming an α-azidoalkyl radical. RNH· when at a secondary carbon site (e.g., 2'-azido-2'-deoxyuridine) underwent bimolecular electrophilic addition to the C5═C6 double bond of a proximate pyrimidine base. Finally, RNH· at tertiary alkyl carbon (4'-azidocytidine) underwent little reaction. These results show the influence of the stereochemical and electronic environment on RNH· reactivity and allow the selection of those azidonucleosides that would be most effective in augmenting cellular radiation damage.


Assuntos
Elétrons , Nucleosídeos , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Pirimidinas , Açúcares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA