RESUMO
Diabetes's effects on wound healing present a major treatment challenge and increase the risk of amputation. When traditional therapies fail, new approaches must be investigated. With their submicron size and improved cellular internalisation, nanoparticles present a viable way to improve diabetic wound healing. They are attractive options because of their innate antibacterial qualities, biocompatibility, and biodegradability. Nanoparticles loaded with organic or inorganic compounds, or embedded in biomimetic matrices such as hydrogels, chitosan, and hyaluronic acid, exhibit excellent anti-inflammatory, antibacterial, and antioxidant properties. Drug delivery systems (DDSs)-more precisely, nanodrug delivery systems (NDDSs)-use the advantages of nanotechnology to get around some of the drawbacks of traditional DDSs. Recent developments show how expertly designed nanocarriers can carry a variety of chemicals, transforming the treatment of diabetic wounds. Biomaterials that deliver customised medications to the wound microenvironment demonstrate potential. Delivery techniques for nanomedicines become more potent than ever, overcoming conventional constraints. Therapeutics for diabetes-induced non-healing wounds are entering a revolutionary era thanks to precisely calibrated nanocarriers that effectively distribute chemicals. This review highlights the therapeutic potential of nanoparticles and outlines the multifunctional nanoparticles of the future that will be used for complete wound healing in diabetics. The investigation of novel nanodrug delivery systems has the potential to revolutionise diabetic wound therapy and provide hope for more efficient and focused therapeutic approaches.
Assuntos
Pé Diabético , Nanopartículas , Cicatrização , Pé Diabético/tratamento farmacológico , Humanos , Animais , Cicatrização/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Portadores de Fármacos/químicaRESUMO
Biogenic synthesis of silver nanoparticles (AgNPs) has emerged as an eco-friendly and sustainable approach with diverse biological applications. This study presents synthesis of AgNPs-LS using a probiotic strain Lactobacillus salivarius (L. salivarius) and explores their multifaceted biological activities, including antibacterial, antibiofilm, anti-quorum sensing, antifungal, antioxidant, anticancer, anticoagulant and thrombolytic properties. The biosynthesis of AgNPs-LS was successfully achieved using L. salivarius cell free supernatants, resulting in well-characterized nanoparticles as confirmed by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) and zeta potential analysis. The AgNPs-LS demonstrated potent antibacterial activity against different pathogenic bacteria (C. violaceum, P. aeruginosa, S. aureus, E. coli and S. marcescens), emphasizing their potential in combating bacterial infections. Moreover, these AgNPs-LS were effective in inhibiting biofilm formation (>60 % at 1/2 MIC), a key mechanism of bacterial virulence, highlighting their utility in preventing biofilm-related infections. AgNPs-LS exhibited anti-quorum sensing activity, disrupting bacterial communication systems and potentially reducing virulence factor such as, violacein production in C. violaceum, pyocyanin production in P. aeruginosa and prodigiosin production in S. marcescens. Additionally, AgNPs-LS also exhibited notable antifungal activity towards a different pathogenic fungus (F. proliferatum, P. purpurogenum, A. niger and R. stolonifer). In terms of health applications, the AgNPs-LS displayed significant antioxidant activity, effectively scavenging DPPH⢠(IC50 = 42.65 µg/mL) and ABTSâ¢+ (IC50 = 53.77 µg/mL) free radicals. Furthermore, AgNPs-LS showed cytotoxicity against breast cancer cells (MCF-7) (IC50 = 52.29 µg/mL), positioning them as promising candidates for cancer therapy. Moreover, AgNPs-LS were also shown promising anticoagulant and thrombolytic activities under practical conditions. Therefore, the biogenic synthesis of AgNPs-LS using L. salivarius offers a sustainable and cost-effective route for producing AgNPs with an array of biological activities. These AgNPs-LS have the potential to address various challenges in healthcare, ranging from antimicrobial, anticancer applications to biofilm inhibition, antioxidant therapy, anticoagulant and thrombolytic agents.
RESUMO
Withaferin A, a steroid lactone from Withania somnifera, exhibits anti-inflammatory, immunomodulatory, and antioxidant properties. This study investigated the effects of withaferin A on collagen-induced arthritis (CIA) rats, focusing on NF-κB p65 regulation and cytokine release. Withaferin A (50 mg/kg b.wt., orally) or methotrexate (0.25 mg/kg b.wt., i.p., as a reference drug) was given to CIA rats daily for 20 days postarthritis induction. Joints were removed from nonarthritic and arthritic rats to assess the levels of NO, MPO, interleukin (IL)-1ß, IL-6, IL-10, TNF-α, COX-2, and NF-κB via ELISA. Furthermore, the mRNA expression of IL-1ß, IL-10, TNF-α, COX-2, iNOS, and NF-κB was also assessed through qPCR. Treatment with withaferin A significantly inhibited the levels of inflammatory cytokines and the transcription factor NF-κB; suppressed the expression of IL-1ß, IL-10, TNF-α, COX-2, iNOS, and NF-κB in the joint tissue of CIA rats; and reduced cartilage and bone destruction, as shown by H&E staining. To confirm the results obtained from biochemical and molecular studies and to determine the molecular target of withaferin A, we performed a molecular simulation of the potential targets of withaferin A, which identified the NF-κB pathway as its target. These results suggested that withaferin A effectively attenuated rheumatoid arthritis progression by inhibiting the activation of the NF-κB pathway and the downstream secretion of inflammatory cytokines.
Assuntos
Artrite Experimental , Citocinas , NF-kappa B , Transdução de Sinais , Vitanolídeos , Animais , Vitanolídeos/farmacologia , Vitanolídeos/uso terapêutico , Ratos , Citocinas/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , NF-kappa B/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ratos Wistar , Modelos Animais de Doenças , Withania/químicaRESUMO
Background: Selective cancer cell recognition is the most challenging objective in the targeted delivery of anti-cancer agents. Extruded specific cancer cell membrane coated nanoparticles, exploiting the potential of homotypic binding along with certain protein-receptor interactions, have recently proven to be the method of choice for targeted delivery of anti-cancer drugs. Prediction of the selective targeting efficiency of the cancer cell membrane encapsulated nanoparticles (CCMEN) is the most critical aspect in selecting this strategy as a method of delivery. Materials and methods: A probabilistic model based on binding scores and differential expression levels of Glioblastoma cancer cells (GCC) membrane proteins (factors and receptors) was implemented on python 3.9.1. Conditional binding efficiency (CBE) was derived for each combination of protein involved in the interactions. Selective propensities and Odds ratios in favour of cancer cells interactions were determined for all the possible combination of surface proteins for 'k' degree of interaction. The model was experimentally validated by two types of Test cultures. Results: Several Glioblastoma cell surface antigens were identified from literature and databases. Those were screened based on the relevance, availability of expression levels and crystal structure in public databases. High priority eleven surface antigens were selected for probabilistic modelling. A new term, Break-even point (BEP) was defined as a characteristic of the typical cancer cell membrane encapsulated delivery agents. The model predictions lie within ±7% of the experimentally observed values for both experimental test culture types. Conclusion: The implemented probabilistic model efficiently predicted the directional preference of the exposed nanoparticle coated with cancer cell membrane (in this case GCC membrane). This model, however, is developed and validated for glioblastoma, can be easily tailored for any type of cancer involving CCMEN as delivery agents for potential cancer immunotherapy. This probabilistic model would help in the development of future cancer immunotherapeutic with greater specificity.
Assuntos
Antineoplásicos , Glioblastoma , Nanopartículas , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Membrana Celular/metabolismo , Antineoplásicos/uso terapêutico , Membranas/metabolismo , Nanopartículas/químicaRESUMO
Carbon dots (CDs) are a new category of crystalline, quasi-spherical fluorescence, "zero-dimensional" carbon nanomaterials with a spatial size between 1 nm to 10 nm and have gained widespread attention in recent years. Green CDs are carbon dots synthesised from renewable biomass such as agro-waste, plants or medicinal plants and other organic biomaterials. Plant-mediated synthesis of CDs is a green chemistry approach that connects nanotechnology with the green synthesis of CDs. Notably, CDs made with green technology are economical and far superior to those manufactured with physicochemical methods due to their exclusive benefits, such as being affordable, having high stability, having a simple protocol, and being safer and eco-benign. Green CDs can be synthesized by using ultrasonic strategy, chemical oxidation, carbonization, solvothermal and hydrothermal processes, and microwave irradiation using various plant-based organic resources. CDs made by green technology have diverse applications in biomedical fields such as bioimaging, biosensing and nanomedicine, which are ascribed to their unique properties, including excellent luminescence effect, strong stability and good biocompatibility. This review mainly focuses on green CDs synthesis, characterization techniques, beneficial properties of plant resource-based green CDs and their biomedical applications. This review article also looks at the research gaps and future research directions for the continuous deepening of the exploration of green CDs.
RESUMO
In the face of rising antibiotic resistance and the need for novel therapeutic approaches against cancer, the present study delves into the various facets of biosynthesized silver nanoparticles (AgNPs) derived from the probiotic strain Lactobacillus casei (AgNPs-LC), assessing their efficacy in combating bacterial infections, disrupting biofilm formation, interfering with quorum sensing mechanisms, and exhibiting anti-cancer properties. The results showed that the AgNPs-LC had a spherical shape with an average size of 15 nm. The biosynthesized AgNPs-LC showed a symmetrical absorption spectrum with a peak at 458 nm with a diameter of 5-20 nm. AgNPs-LC exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria and inhibited the biofilm formation (> 50% at sub-MIC) and quorum sensing-mediated virulence factors, such as the production of violacein in C. violaceum (> 80% at sub-MIC), pyocyanin in P. aeruginosa (> 70% at sub-MIC), and prodigiosin in S. marcescens (> 80% at sub-MIC). The exopolysaccharides (EPS) were also found to reduce in the presence of AgNPs-LC. Furthermore, the AgNPs-LC showed anti-cancer and anti-metastasis activity via inhibiting cell migration and invasion of human lung cancer (A-549) cells. Overall, the present study brings out the multifaceted therapeutic capabilities of AgNPs-LC which offer exciting prospects for the development of innovative biomedical and pharmaceutical interventions, making AgNPs-LC a versatile and promising candidate for a wide range of applications in healthcare and medicine. However, further research is essential to fully harness their therapeutic potential.
RESUMO
Beta amyloid peptide is widely studied due to its association with Alzheimer disease (AD). Various study reported that the accumulation of beta amyloid in brain cells leads to Alzheimer disease. Hence, Beta amyloid peptide could be a potential target of anti-AD therapy. Hence, it is of interest to develop potent inhibitors for Beta amyloid peptide in the context of Alzheimer disease (AD). We report the binding features of Ascorbic acid, Cysteine, Dithioerythriol, Dithiothreitol, Malic acid and α-Tocopherol with beta amyloid having binding energy values of -6.7, -6.5, -6.0, -6.5, -6.7 and - 7.0 kcal/mol respectively. The molecular docking of top-scoring compounds with beta amyloid suggests that amino acids such as ASP23, GLU22, Phe19, are crucial in binding. Molecular dynamics simulation study showed steady-state interaction of compounds with beta amyloid for further consideration.
RESUMO
Patient safety and medical diagnosis of patients are mainly influenced by laboratory results. The present study aimed to evaluate the errors in the preanalytical phase of testing in a Clinical Chemistry diagnostic laboratory. A review was conducted at the Clinical Chemistry Laboratory of a hospital in Saudi Arabia from January 2019 to December 2020. Using the laboratory information system, the data of all canceled tests and requests were retrieved and evaluated for preanalytical errors. A total of 55,345 laboratory test requests and samples from different departments were evaluated for preanalytical errors. An overall rate of 12.1% (6705) was determined as preanalytical errors. The occurrence of these errors was found to be highest in the emergency department (21%). The leading preanalytical errors were nonreceived samples (3.7%) and hemolysis (3.5%). The annual preanalytical errors revealed an increasing rate in outpatient and inpatient departments, while a decreasing rate was observed in the emergency department. An increased rate of errors was also noted for the 2-year study period from 11.3% to 12.9%. The preanalytical phase has a significant impact on the quality of laboratory results. The rate of error in the study was high and the leading causes were nonreceived samples and hemolysis. An increased occurrence of hemolyzed samples in the outpatient department was noted. Enhanced educational efforts emphasizing specimen quality issues and training in sample collection among hospital staff must be carried out.
Assuntos
Serviços de Laboratório Clínico , Laboratórios Hospitalares , Química Clínica , Técnicas de Laboratório Clínico , Erros de Diagnóstico , Hemólise , HumanosRESUMO
In this study, a novel polymeric nanomaterial was synthesized and characterized, and it its potential usability in hypertension treatment was demonstrated. For these purposes, a poly(hydroxyethyl methacrylate-methacryloylamidophenylalanine)-based polymeric nanomaterial (p(HEMPA)) was synthesized using a mini-emulsion polymerization technique. The nanomaterials were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and zeta size analysis. The synthesized p(HEMPA) nanomaterial had a diameter of about 113 nm. Amlodipine-binding studies were optimized by changing the reaction conditions. Under optimum conditions, amlodipine's maximum adsorption value (Qmax) of the p(HEMPA) nanopolymer was found to be 145.8 mg/g. In vitro controlled drug release rates of amlodipine, bound to the nanopolymer at the optimum conditions, were studied with the dialysis method in a simulated gastrointestinal system with pH values of 1.2, 6.8 and 7.4. It was found that 99.5% of amlodipine loaded on the nanomaterial was released at pH 7.4 and 72 h. Even after 72 h, no difference was observed in the release of AML. It can be said that the synthesized nanomaterial is suitable for oral amlodipine release. In conclusion, the synthesized nanomaterial was studied for the first time in the literature as a drug delivery system for use in the treatment of hypertension. In addition, AML-p(HEMPA) nanomaterials may enable less frequent drug uptake, have higher bioavailability, and allow for prolonged release with minimal side effects.
RESUMO
P53 is one of the most important proteins for its role in cellular signal transduction pathways. It regulates a wide variety of cellular processes, which includes apoptosis, senescence, cell cycle arrest, differentiation, and DNA repair and replication and cancer dynamics. It is a transcription factor for various cellular proteins. Recent report suggests that P53 is linked with transduction proteins involved in cellular immunity. Toll like receptors are needed for communication in cellular immunity. The interaction between p53 and toll like receptors is reported in various studies. Therefore, it is of interest to document the molecular docking analysis of p53 with Toll-like receptors for further consideration in therapeutic development. In the present paper we studied molecular interaction between p53 and toll like receptors using molecular docking approach. We used open-source tools for molecular docking and analyzing the data. Our molecular docking results suggest there is a promising interaction between p53 and toll like receptors. Our study will be a very useful for molecular therapeutics and drug design strategies. Further, molecular dynamics studies can be useful to determine of the stability of complex form by p53 and toll like receptors.