Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Am Chem Soc ; 144(37): 16883-16897, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36089745

RESUMO

Understanding heterogeneous catalysts is a challenging pursuit due to surface site nonuniformity and aperiodicity in traditionally used materials. One example is sulfated metal oxides, which function as highly active catalysts and as supports for organometallic complexes. These applications are due to traits such as acidity, ability to act as a weakly coordinating ligand, and aptitude for promoting transformations via radical cation intermediates. Research is ongoing about the structural features of sulfated metal oxides that imbue the aforementioned properties, such as sulfate geometry and coordination. To better understand these materials, metal-organic frameworks (MOFs) have been targeted as structurally defined analogues. Composed of inorganic nodes and organic linkers, MOFs possess features such as high porosity and crystallinity, which make them attractive for mechanistic studies of heterogeneous catalysts. In this work, Zr6-based MOF NU-1000 is sulfated and characterized using techniques such as single crystal X-ray diffraction in addition to diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The dynamic nature of the sulfate binding motif is found to transition from monodentate, to bidentate, to tridentate depending on the degree of hydration, as supported by density functional theory (DFT) calculations. Heightened Brønsted acidity compared to the parent MOF was observed upon sulfation and probed through trimethylphosphine oxide physisorption, ammonia sorption, in situ ammonia DRIFTS, and DFT studies. With the support structure benchmarked, an organoiridium complex was chemisorbed onto the sulfated MOF node, and the efficacy of this supported catalyst was demonstrated for stoichiometric and catalytic activation of benzene-d6 and toluene with structure-activity relationships derived.


Assuntos
Estruturas Metalorgânicas , Amônia , Benzeno , Catálise , Ligantes , Estruturas Metalorgânicas/química , Óxidos/química , Sulfatos , Óxidos de Enxofre , Tolueno , Zircônio/química
2.
J Am Chem Soc ; 143(26): 9961-9971, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34161089

RESUMO

While iridium-based perovskites have been identified as promising candidates for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolyzer applications, an improved fundamental understanding of these highly dynamic materials under reaction conditions is needed to inform more robust future catalyst design. Herein, we study the highly active SrIr0.8Zn0.2O3 perovskite for the OER in acid by employing electrochemical experiments with in situ and ex situ characterization techniques to understand the dynamic nature of this material at both short and long time scales. We observe initial intrinsic OER activity improvement with electrochemical cycling as well as an initial increase of Ir oxidation state under OER conditions via in situ X-ray absorption spectroscopy. We discover that the SrIr0.8Zn0.2O3 perovskite experiences an OER-induced metal to insulator transition (MIT) with extensive electrochemical cycling, caused by surface reorganization and changes to the material crystallinity that occur with exposure to an acidic and oxidizing environment. Our novel identification of an OER-induced MIT for iridate perovskites reveals an additional stability concern for iridate catalysts which are known to experience material dissolution challenges; this work ultimately aims to inform future catalyst material design for PEM water electrolysis applications.

3.
Proc Natl Acad Sci U S A ; 113(19): 5159-66, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114536

RESUMO

Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sum-frequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. It was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and heterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.


Assuntos
Catálise , Enzimas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Químicos , Oxigênio/química , Absorção Fisico-Química , Adsorção , Coloides/química , Teste de Materiais , Oxirredução , Tamanho da Partícula
4.
Inorg Chem ; 56(10): 5710-5719, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28471186

RESUMO

Oxygen and aluminum K-edge X-ray absorption spectroscopy (XAS), imaging from a scanning transmission X-ray microscope (STXM), and first-principles calculations were used to probe the composition and morphology of bulk aluminum metal, α- and γ-Al2O3, and several types of aluminum nanoparticles. The imaging results agreed with earlier transmission electron microscopy studies that showed a 2 to 5 nm thick layer of Al2O3 on all the Al surfaces. Spectral interpretations were guided by examination of the calculated transition energies, which agreed well with the spectroscopic measurements. Features observed in the experimental O and Al K-edge XAS were used to determine the chemical structure and phase of the Al2O3 on the aluminum surfaces. For unprotected 18 and 100 nm Al nanoparticles, this analysis revealed an oxide layer that was similar to γ-Al2O3 and comprised of both tetrahedral and octahedral Al coordination sites. For oleic acid-protected Al nanoparticles, only tetrahedral Al oxide coordination sites were observed. The results were correlated to trends in the reactivity of the different materials, which suggests that the structures of different Al2O3 layers have an important role in the accessibility of the underlying Al metal toward further oxidation. Combined, the Al K-edge XAS and STXM results provided detailed chemical information that was not obtained from powder X-ray diffraction or imaging from a transmission electron microscope.

5.
J Am Chem Soc ; 137(32): 10231-7, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26168190

RESUMO

Several types of mesoporous aluminosilicates were synthesized and evaluated in the catalytic isomerization of n-hexane, both with and without Pt nanoparticles loaded into the mesopores. The materials investigated included mesoporous MFI and BEA type zeolites, MCF-17 mesoporous silica, and an aluminum modified MCF-17. The acidity of the materials was investigated through pyridine adsorption and Fourier Transform-Infrared Spectroscopy (FT-IR). It was found that the strong Brönsted acid sites in the micropores of the zeolite catalysts facilitated the cracking of hexane. However, the medium strength acid sites on the Al modified MCF-17 mesoporous silica greatly enhanced the isomerization reaction. Through the loading of different amounts of Pt into the mesopores of the Al modified MCF-17, the relationship between the metal nanoparticles and acidic sites on the support was revealed.

6.
Small ; 11(25): 3045-53, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25727527

RESUMO

Bimetallic nanoparticle (NP) catalysts are interesting for the development of selective catalysts in reactions such as the reduction of CO2 by H2 to form hydrocarbons. Here the synthesis of Ni-Co NPs is studied, and the morphological and structural changes resulting from their activation (via oxidation/reduction cycles), and from their operation under reaction conditions, are presented. Using ambient-pressure X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and transmission electron microscopy, it is found that the initial core-shell structure evolves to form a surface alloy due to nickel migration from the core. Interestingly, the core consists of a Ni-rich single crystal and a void with sharp interfaces. Residual phosphorous species, coming from the ligands used for synthesis, are found initially concentrated in the NP core, which later diffuse to the surface.

7.
Nano Lett ; 14(8): 4792-6, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25026434

RESUMO

Hydrogen spillover is of great importance to understanding many phenomena in heterogeneous catalysis and has long been controversial. Here we exploit well-defined nanoparticles to demonstrate its occurrence through evaluation of CO2 methanation kinetics. Combining platinum and cobalt nanoparticles causes a substantial increase in reaction rate, but increasing the spatial separation between discrete cobalt and platinum entities results in a dramatic ∼ 50% drop in apparent activation energy, symptomatic of H atom surface diffusion limiting the reaction rate.

8.
Nano Lett ; 14(8): 4907-12, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25078630

RESUMO

Designing catalysts with high thermal stability and resistance to deactivation while simultaneously maintaining their catalytic activity and selectivity is of key importance in high-temperature reforming reactions. We prepared Pt nanoparticle catalysts supported on either mesoporous SiO2 or TiO2. Sandwich-type Pt core@shell catalysts (SiO2@Pt@SiO2 and SiO2@Pt@TiO2) were also synthesized from Pt nanoparticles deposited on SiO2 spheres, which were encapsulated by either mesoporous SiO2 or TiO2 shells. n-Hexane reforming was carried out over these four catalysts at 240-500 °C with a hexane/H2 ratio of 1:5 to investigate thermal stability and the role of the support. For the production of high-octane gasoline, branched C6 isomers are more highly desired than other cyclic, aromatic, and cracking products. Over Pt/TiO2 catalyst, production of 2-methylpentane and 3-methylpentane via isomerization was increased selectively up to 420 °C by charge transfer at Pt-TiO2 interfaces, as compared to Pt/SiO2. When thermal stability was compared between supported catalysts and sandwich-type core@shell catalysts, the Pt/SiO2 catalyst suffered sintering above 400 °C, whereas the SiO2@Pt@SiO2 catalyst preserved the Pt nanoparticle size and shape up to 500 °C. The SiO2@Pt@TiO2 catalyst led to Pt nanoparticle sintering due to incomplete protection of the TiO2 shells during the reaction at 500 °C. Interestingly, over the Pt/TiO2 catalyst, the average size of Pt nanoparticles was maintained even after 500 °C without sintering. In situ ambient pressure X-ray photoelectron spectroscopy demonstrated that the Pt/TiO2 catalyst did not exhibit TiO2 overgrowth on the Pt surface or deactivation by Pt sintering up to 600 °C. The extraordinarily high stability of the Pt/TiO2 catalyst promoted high reaction rates (2.0 µmol · g(-1) · s(-1)), which was 8 times greater than other catalysts and high isomer selectivity (53.0% of C6 isomers at 440 °C). By the strong metal-support interaction, the Pt/TiO2 was turned out as the best catalyst with great thermal stability as well as high reaction rate and product selectivity in high-temperature reforming reaction.

9.
Nano Lett ; 14(6): 3203-7, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24762053

RESUMO

We studied Pt-Co bimetallic nanoparticles during oxidation in O2 and reduction in H2 atmospheres using an aberration corrected environmental transmission electron microscope. During oxidation Co migrates to the nanoparticle surface forming a strained epitaxial CoO film. It subsequently forms islands via strain relaxation. The atomic restructuring is captured as a function of time. During reduction cobalt migrates back to the bulk, leaving a monolayer of platinum on the surface.

10.
J Am Chem Soc ; 136(47): 16661-5, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25387226

RESUMO

When pure mesoporous silica (MCF-17) was modified with aluminum (Al modified MCF-17), Lewis acid sites were created, but this material was inactive for the catalytic conversion (reforming) of n-hexane to isomers. When colloidally synthesized platinum nanoparticles were loaded onto traditional MCF-17, the catalyst showed very low activity toward isomer production. However, when Pt nanoparticles were loaded onto Al modified MCF-17, isomerization became the dominant catalytic pathway, with extremely high activity and selectivity (>90%), even at high temperatures (240-360 °C). This highly efficient catalytic chemistry was credited to the tandem effect between the acidic Al modified MCF-17 and the Pt metal.

11.
J Am Chem Soc ; 136(49): 17207-12, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25398051

RESUMO

The effect of acidic properties of mesoporous zeolites on the control of product selectivity during the hydrogenative isomerization of methylcyclopentane has been investigated. A series of mesoporous zeolites with controlled acidic properties were prepared by postdealumination process with hydrochloric acid under hydrothermal conditions, and the resultant zeolites used for supporting colloidal Pt nanoparticles (NPs) with a mean size of 2.5 nm (± 0.6 nm). As compared to the pure Pt NPs supported on catalytically inert mesoporous silica (MCF-17) as the reference catalyst that can produce isomers most selectively (∼80%), the Pt NPs supported on mesoporous zeolites produced C6-cyclic hydrocarbons (i.e., cyclohexane and benzene) most dominantly. The type and strength of the Brönsted (B) and Lewis (L) acid sites of those zeolites with a controlled Al amount are analyzed by using FT-IR after the adsorption of pyridine and NH3 temperature-programmed desorption measurements, and they are correlated with the selectivity change between cyclohexane and benzene. From this investigation, we found a linear relationship between the number of Brönsted acid sites and the formation rate for cyclohexane. In addition, we revealed that more Lewis acidic zeolite having relatively smaller B/L ratio is effective for the cyclohexane formation, whereas more Brönsted acidic zeolite having relatively larger B/L ratio is effective for the benzene formation.

12.
J Am Chem Soc ; 136(19): 6830-3, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24773412

RESUMO

Selective isomerization toward branched hydrocarbons is an important catalytic process in oil refining to obtain high-octane gasoline with minimal content of aromatic compounds. Colloidal Pt nanoparticles with controlled sizes of 1.7, 2.7, and 5.5 nm were deposited onto ordered macroporous oxides of SiO2, Al2O3, TiO2, Nb2O5, Ta2O5, and ZrO2 to investigate Pt size- and support-dependent catalytic selectivity in n-hexane isomerization. Among the macroporous oxides, Nb2O5 and Ta2O5 exhibited the highest product selectivity, yielding predominantly branched C6 isomers, including 2- or 3-methylpentane, as desired products of n-hexane isomerization (140 Torr n-hexane and 620 Torr H2 at 360 °C). In situ characterizations including X-ray diffraction and ambient-pressure X-ray photoelectron spectroscopy showed that the crystal structures of the oxides in Pt/oxide catalysts were not changed during the reaction and oxidation states of Nb2O5 were maintained under both H2 and O2 conditions. Fourier transform infrared spectra of pyridine adsorbed on the oxides showed that Lewis sites were the dominant acidic site of the oxides. Macroporous Nb2O5 and Ta2O5 were identified to play key roles in the selective isomerization by charge transfer at Pt-oxide interfaces. The selectivity was revealed to be Pt size-dependent, with improved isomer production as Pt sizes increased from 1.7 to 5.5 nm. When 5.5 nm Pt nanoparticles were supported on Nb2O5 or Ta2O5, the selectivity toward branched C6 isomers was further increased, reaching ca. 97% with a minimum content of benzene, due to the combined effects of the Pt size and the strong metal-support interaction.

13.
J Am Chem Soc ; 136(28): 9898-901, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24978060

RESUMO

The mechanistic role of platinum and precious metals in promoting cobalt hydrogenation catalysts of the type used in reactions such as Fischer-Tropsch synthesis is highly debated. Here we use well-defined monometallic Pt and Co nanoparticles (NPs) and CO2 methanation as a probe reaction to show that Pt NPs deposited near Co NPs can enhance the CO2 methanation rate by up to a factor of 6 per Co surface atom. In situ NEXAFS spectroscopy of these same Pt NP plus Co NP systems in hydrogen shows that the presence of nearby Pt NPs is able to significantly enhance reduction of the Co at temperatures relevant to Fischer-Tropsch synthesis and CO2 methanation. The mechanistic role of Pt in these reactions is discussed in light of these findings.

14.
J Am Chem Soc ; 136(6): 2260-3, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24460136

RESUMO

Hydrogenations of CO or CO2 are important catalytic reactions as they are interesting alternatives to produce fine chemical feedstock hence avoiding the use of fossil sources. Using monodisperse nanoparticle (NP) catalysts, we have studied the CO/H2 (i.e., Fischer-Tropsch synthesis) and CO2/H2 reactions. Exploiting synchrotron based in situ characterization techniques such as XANES and XPS, we were able to demonstrate that 10 nm Co NPs cannot be reduced at 250 °C while supported on TiO2 or SiO2 and that the complete reduction of cobalt can only be achieved at 450 °C. Interestingly, cobalt oxide performs better than fully reduced cobalt when supported on TiO2. In fact, the catalytic results indicate an enhancement of 10-fold for the CO2/H2 reaction rate and 2-fold for the CO/H2 reaction rate for the Co/TiO2 treated at 250 °C in H2 versus Co/TiO2 treated at 450 °C. Inversely, the activity of cobalt supported on SiO2 has a higher turnover frequency when cobalt is metallic. The product distributions could be tuned depending on the support and the oxidation state of cobalt. For oxidized cobalt on TiO2, we observed an increase of methane production for the CO2/H2 reaction whereas it is more selective to unsaturated products for the CO/H2 reaction. In situ investigation of the catalysts indicated wetting of the TiO2 support by CoO(x) and partial encapsulation of metallic Co by TiO(2-x).

15.
J Am Chem Soc ; 136(9): 3624-9, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24498978

RESUMO

Analysis of catalytic organic transformations in flow reactors and detection of short-lived intermediates are essential for optimization of these complex reactions. In this study, spectral mapping of a multistep catalytic reaction in a flow microreactor was performed with a spatial resolution of 15 µm, employing micrometer-sized synchrotron-based IR and X-ray beams. Two nanometer sized Au nanoclusters were supported on mesoporous SiO2, packed in a flow microreactor, and activated toward the cascade reaction of pyran formation. High catalytic conversion and tunable products selectivity were achieved under continuous flow conditions. In situ synchrotron-sourced IR microspectroscopy detected the evolution of the reactant, vinyl ether, into the primary product, allenic aldehyde, which then catalytically transformed into acetal, the secondary product. By tuning the residence time of the reactants in a flow microreactor a detailed analysis of the reaction kinetics was performed. An in situ micrometer X-ray absorption spectroscopy scan along the flow reactor correlated locally enhanced catalytic conversion, as detected by IR microspectroscopy, to areas with high concentration of Au(III), the catalytically active species. These results demonstrate the fundamental understanding of the mechanism of catalytic reactions which can be achieved by the detailed mapping of organic transformations in flow reactors.

16.
J Phys Chem A ; 118(37): 8446-52, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24773533

RESUMO

Selective C-C and C-H bond activations are an important catalytic process to produce various value-added hydrocarbons via reforming processes. For producing desired product with a high yield, control of reaction pathway through the design of catalyst and fundamental understanding and clarification of reaction mechanism are prerequisite. In this work, we designed heterogeneous catalysts by combining Pt nanoparticles and two different mesoporous zeolites with microporous frameworks of BEA and MFI for the hydrogenative model reforming reaction of hydrocarbon (i.e., methylcyclopentane). Depending on the catalyst combination, the reaction pathways of (i) dehydrogenation, (ii) ring-opening with isomerization, and ring-enlargement with (iii) hydrogenation and (iv) dehydrogenation of C5-cyclic ring to C6-cyclic ring (i.e., cyclohexane and benzene) can be controlled to produce various products with high yields. Furthermore, we revealed a reaction intermediate formed at the interface of Pt and zeolite by real-time surface vibrational sum-frequency generation spectroscopic studies. This study would provide practical and fundamental insights for design of heterogeneous catalyst for controlling reaction pathways.

17.
J Am Chem Soc ; 135(44): 16689-96, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24090187

RESUMO

The interaction of the metal and support in oxide-supported transition-metal catalysts has been proven to have extremely favorable effects on catalytic performance. Herein, mesoporous Co3O4, NiO, MnO2, Fe2O3, and CeO2 were synthesized and utilized in CO oxidation reactions to compare the catalytic activities before and after loading of 2.5 nm Pt nanoparticles. Turnover frequencies (TOFs) of pure mesoporous oxides were 0.0002­0.015 s(­1), while mesoporous silica was catalytically inactive in CO oxidation. When Pt nanoparticles were loaded onto the oxides, the TOFs of the Pt/metal oxide systems (0.1­500 s(­1)) were orders of magnitude greater than those of the pure oxides or the silica-supported Pt nanoparticles. The catalytic activities of various Pt/oxide systems were further influenced by varying the ratio of CO and O2 in the reactant gas feed, which provided insight into the mechanism of the observed support effect. In situ characterization using near-edge X-ray absorption fine structure (NEXAFS) and ambient-pressure X-ray photoelectron spectroscopy (APXPS) under catalytically relevant reaction conditions demonstrated a strong correlation between the oxidation state of the oxide support and the catalytic activity at the oxide­metal interface. Through catalytic activity measurements and in situ X-ray spectroscopic probes, CoO, Mn3O4, and CeO2 have been identified as the active surface phases of the oxide at the interface with Pt nanoparticles.

18.
J Am Chem Soc ; 135(34): 12560-3, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23952637

RESUMO

The surface structure of Pt(557) during the catalytic oxidation of hydrogen was studied with in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. At 298 K, the surface Pt oxide formed after exposing Pt(557) to approximately 1 Torr of O2 can be readily removed by H2, at H2 partial pressures below 50 mTorr. Water is detected as the product in the gas phase, which also coadsorbs with hydroxyl groups on the Pt(557) surface.

19.
J Am Chem Soc ; 135(10): 3881-6, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23406377

RESUMO

Research to develop highly versatile, chiral, heterogeneous catalysts for asymmetric organic transformations, without quenching the catalytic reactivity, has met with limited success. While chiral supramolecular structures, connected by weak bonds, are highly active for homogeneous asymmetric catalysis, their application in heterogeneous catalysis is rare. In this work, asymmetric catalyst was prepared by encapsulating metallic nanoclusters in chiral self-assembled monolayer (SAM), immobilized on mesoporous SiO2 support. Using olefin cyclopropanation as an example, it was demonstrated that by controlling the SAM properties, asymmetric reactions can be catalyzed by Au clusters embedded in chiral SAM. Up to 50% enantioselectivity with high diastereoselectivity were obtained while employing Au nanoclusters coated with SAM peptides as heterogeneous catalyst for the formation of cyclopropane-containing products. Spectroscopic measurements correlated the improved enantioselectivity with the formation of a hydrogen-bonding network in the chiral SAM. These results demonstrate the synergetic effect of the catalytically active metallic sites and the surrounding chiral SAM for the formation of a mesoscale enantioselective catalyst.


Assuntos
Alcenos/síntese química , Ouro/química , Nanopartículas Metálicas/química , Alcenos/química , Catálise , Estrutura Molecular , Porosidade , Dióxido de Silício/química , Propriedades de Superfície
20.
Nano Lett ; 12(10): 5196-201, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22938198

RESUMO

Vapor-phase transformations of furfural in H(2) over a series of Pt nanoparticles (NPs) with various particle sizes (1.5-7.1 nm size range) and shapes (rounded, cubes, octahedra) encapsulated in poly(vinylpyrrolidone) (PVP) and dispersed on MCF-17 mesoporous silica were investigated at ambient pressure in the 443-513 K temperature range. Furan and furfuryl alcohol (FFA) were two primary products as a result of furfural decarbonylation and hydrogenation reactions, respectively. Under conditions of the study both reactions exhibited structure sensitivity evidenced by changes in product selectivities, turnover rates (TORs), and apparent activation energies (E(A)'s) with Pt particle size and shape. For instance, upon an increase in Pt particle size from 1.5 to 7.1 nm, the selectivity toward FFA increases from 1% to 66%, the TOR of FFA production increases from 1 × 10(-3) s(-1) to 7.6 × 10(-2) s(-1), and E(A) decreases from 104 kJ mol(-1) to 15 kJ mol(-1) (9.3 kPa furfural, 93 kPa H(2), 473 K). Conversely, under the same experimental conditions the decarbonylation reaction path is enhanced over smaller nanoparticles. The smallest NPs (1.5 nm) produced the highest selectivity (96%) and highest TOR values (8.8 × 10(-2) s(-1)) toward furan formation. The E(A) values for decarbonylation (∼62 kJ mol(-1)) was Pt particle size independent. Furan was further converted to propylene via a decarbonylation reaction, but also to dihydrofuran, tetrahydrofuran, and n-butanol in secondary reactions. Furfuryl alcohol was converted to mostly to 2-methylfuran.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA