Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 149(12): 3380-3395, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38712606

RESUMO

Plant hormones are important in the control of physiological and developmental processes including seed germination, senescence, flowering, stomatal aperture, and ultimately the overall growth and yield of plants. Many currently available methods to quantify such growth regulators quickly and accurately require extensive sample purification using complex analytic techniques. Herein we used ultra-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) to create and validate the prediction of hormone concentrations made using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectral profiles of both freeze-dried ground leaf tissue and extracted xylem sap of Japanese knotweed (Reynoutria japonica) plants grown under different environmental conditions. In addition to these predictions made with partial least squares regression, further analysis of spectral data was performed using chemometric techniques, including principal component analysis, linear discriminant analysis, and support vector machines (SVM). Plants grown in different environments had sufficiently different biochemical profiles, including plant hormonal compounds, to allow successful differentiation by ATR-FTIR spectroscopy coupled with SVM. ATR-FTIR spectral biomarkers highlighted a range of biomolecules responsible for the differing spectral signatures between growth environments, such as triacylglycerol, proteins and amino acids, tannins, pectin, polysaccharides such as starch and cellulose, DNA and RNA. Using partial least squares regression, we show the potential for accurate prediction of plant hormone concentrations from ATR-FTIR spectral profiles, calibrated with hormonal data quantified by UHPLC-HRMS. The application of ATR-FTIR spectroscopy and chemometrics offers accurate prediction of hormone concentrations in plant samples, with advantages over existing approaches.


Assuntos
Reguladores de Crescimento de Plantas , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Reguladores de Crescimento de Plantas/análise , Análise dos Mínimos Quadrados , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos , Máquina de Vetores de Suporte , Espectrometria de Massas/métodos , Análise de Componente Principal
2.
Plant Cell Physiol ; 64(2): 152-164, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398993

RESUMO

Removal of the root system induces the formation of new roots from the remaining shoot. This process is primarily controlled by the phytohormone auxin, which interacts with other signals in a yet unresolved manner. Here, we study the classical tomato mutation rosette (ro), which lacks shoot-borne roots. ro mutants were severely inhibited in formation of wound-induced roots (WiRs) and had reduced auxin transport rates. We mapped ro to the tomato ortholog of the Arabidopsis thaliana BIG and the mammalians UBR4/p600. RO/BIG is a large protein of unknown biochemical function. In A. thaliana, BIG was implicated in regulating auxin transport and calcium homeostasis. We show that exogenous calcium inhibits WiR formation in tomato and A. thaliana ro/big mutants. Exogenous calcium antagonized the root-promoting effects of the auxin indole-3-acetic-acid but not of 2,4-dichlorophenoxyacetic acid, an auxin analog that is not recognized by the polar transport machinery, and accumulation of the auxin transporter PIN-FORMED1 (PIN1) was sensitive to calcium levels in the ro/big mutants. Consistent with a role for calcium in mediating auxin transport, both ro/big mutants and calcium-treated wild-type plants were hypersensitive to treatment with polar auxin transport inhibitors. Subcellular localization of BIG suggests that, like its mammalian ortholog, it is associated with the endoplasmic reticulum. Analysis of subcellular morphology revealed that ro/big mutants exhibited disruption in cytoplasmic streaming. We suggest that RO/BIG maintains auxin flow by stabilizing PIN membrane localization, possibly by attenuating the inhibitory effect of Ca2+ on cytoplasmic streaming.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Mutação , Raízes de Plantas/metabolismo , Mamíferos/metabolismo
3.
Plant Cell Environ ; 46(7): 2128-2141, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066607

RESUMO

Chilling can decrease stomatal sensitivity to abscisic acid (ABA) in some legumes, although hormonal mechanisms involved are unclear. After evaluating leaf gas exchange of 16 European soybean genotypes at 14°C, 6 genotypes representing the range of response were selected. Further experiments combined low (L, 14°C) and high (H, 24°C) temperature exposure from sowing until the unifoliate leaf was visible and L or H temperature until full leaf expansion, to impose four temperature treatments: LL, LH, HL, and HH. Prolonged chilling (LL) substantially decreased leaf water content but increased leaf ethylene evolution and foliar concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, indole-3-acetic acid, ABA and jasmonic acid. Across genotypes, photosynthesis linearly increased with stomatal conductance (Gs), with photosynthesis of HH plants threefold higher than LL plants at the same Gs. In all treatments except LL, Gs declined with foliar ABA accumulation. Foliar ABA sprays substantially decreased Gs of HH plants, but did not significantly affect LL plants. Thus low temperature compromised stomatal sensitivity to endogenous and exogenous ABA. Applying the ethylene antagonist 1 methyl-cyclopropene partially reverted excessive stomatal opening of LL plants. Thus, chilling-induced ethylene accumulation may mediate stomatal insensitivity to ABA, offering chemical opportunities for improving seedling survival in cold environments.


Assuntos
Ácido Abscísico , Glycine max , Ácido Abscísico/farmacologia , Temperatura , Etilenos/farmacologia , Plantas
4.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446349

RESUMO

The microspore can follow two different developmental pathways. In vivo microspores follow the gametophytic program to produce pollen grains. In vitro, isolated microspores can be reprogrammed by stress treatments and follow the embryogenic program, producing doubled-haploid embryos. In the present study, we analyzed the dynamics and role of endogenous auxin in microspore development during these two different scenarios, in Brassica napus. We analyzed auxin concentration, cellular accumulation, the expression of the TAA1 auxin biosynthesis gene, and the PIN1-like efflux carrier gene, as well as the effects of inhibiting auxin biosynthesis by kynurenine on microspore embryogenesis. During the gametophytic pathway, auxin levels and TAA1 and PIN1-like expression were high at early stages, in tetrads and tapetum, while they progressively decreased during gametogenesis in both pollen and tapetum cells. In contrast, in microspore embryogenesis, TAA1 and PIN1-like genes were upregulated, and auxin concentration increased from the first embryogenic divisions. Kynurenine treatment decreased both embryogenesis induction and embryo production, indicating that auxin biosynthesis is required for microspore embryogenesis initiation and progression. The findings indicate that auxin exhibits two opposite profiles during these two microspore developmental pathways, which determine the different cell fates of the microspore.


Assuntos
Ácidos Indolacéticos , Cinurenina , Ácidos Indolacéticos/metabolismo , Cinurenina/metabolismo , Proteínas de Plantas/genética , Pólen/genética , Pólen/metabolismo , Desenvolvimento Embrionário
5.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298165

RESUMO

Post-prandial hyperglycemia typical of diabetes mellitus could be alleviated using plant-derived compounds such as polyphenols, which could influence the activities of enzymes involved in carbohydrate digestion and of intestinal glucose transporters. Here, we report on the potential anti-hyperglycemic effect of Crocus sativus tepals compared to stigmas, within the framework of valorizing these by-products of the saffron industry, since the anti-diabetic properties of saffron are well-known, but not those of its tepals. In vitro assays showed that tepal extracts (TE) had a greater inhibitory action than stigma extracts (SE) on α-amylase activity (IC50: TE = 0.60 ± 0.09 mg/mL; SE = 1.10 ± 0.08 mg/mL; acarbose = 0.051 ± 0.07) and on glucose absorption in Caco-2 differentiated cells (TE = 1.20 ± 0.02 mg/mL; SE = 2.30 ± 0.02 mg/mL; phlorizin = 0.23 ± 0.01). Virtual screening performed with principal compounds from stigma and tepals of C. sativus and human pancreatic α-amylase, glucose transporter 2 (GLUT2) and sodium glucose co-transporter-1 (SGLT1) were validated via molecular docking, e.g., for human pancreatic α-amylase, epicatechin 3-o-gallate and catechin-3-o-gallate were the best scored ligands from tepals (-9.5 kcal/mol and -9.4 kcal/mol, respectively), while sesamin and episesamin were the best scored ones from stigmas (-10.1 kcal/mol). Overall, the results point to the potential of C. sativus tepal extracts in the prevention/management of diabetes, likely due to the rich pool of phytocompounds characterized using high-resolution mass spectrometry, some of which are capable of binding and interacting with proteins involved in starch digestion and intestinal glucose transport.


Assuntos
Crocus , Diabetes Mellitus , Humanos , Polifenóis/farmacologia , Polifenóis/metabolismo , Crocus/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/metabolismo , alfa-Amilases Pancreáticas/metabolismo , Células CACO-2 , Simulação de Acoplamento Molecular , Glucose/metabolismo , Extratos Vegetais/química
6.
Transgenic Res ; 31(2): 249-268, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35201538

RESUMO

Isoprenoids are natural products derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, these precursors are synthesized via the cytosolic mevalonate (MVA) and plastidial methylerythritol phosphate (MEP) pathways. The regulation of these pathways must therefore be understood in detail to develop effective strategies for isoprenoid metabolic engineering. We hypothesized that the strict regulation of the native MVA pathway could be circumvented by expressing an ectopic plastidial MVA pathway that increases the accumulation of IPP and DMAPP in plastids. We therefore introduced genes encoding the plastid-targeted enzymes HMGS, tHMGR, MK, PMK and MVD and the nuclear-targeted transcription factor WR1 into rice and evaluated the impact of their endosperm-specific expression on (1) endogenous metabolism at the transcriptomic and metabolomic levels, (2) the synthesis of phytohormones, carbohydrates and fatty acids, and (3) the macroscopic phenotype including seed morphology. We found that the ectopic plastidial MVA pathway enhanced the expression of endogenous cytosolic MVA pathway genes while suppressing the native plastidial MEP pathway, increasing the production of certain sterols and tocopherols. Plants carrying the ectopic MVA pathway only survived if WR1 was also expressed to replenish the plastid acetyl-CoA pool. The transgenic plants produced higher levels of fatty acids, abscisic acid, gibberellins and lutein, reflecting crosstalk between phytohormones and secondary metabolism.


Assuntos
Oryza , Ácidos Graxos , Ácido Mevalônico/metabolismo , Oryza/genética , Oryza/metabolismo , Reguladores de Crescimento de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Terpenos/metabolismo
7.
Plant Cell Environ ; 44(5): 1642-1662, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33464573

RESUMO

Adventitious roots (ARs) are produced from non-root tissues in response to different environmental signals, such as abiotic stresses, or after wounding, in a complex developmental process that requires hormonal crosstalk. Here, we characterized AR formation in young seedlings of Solanum lycopersicum cv. 'Micro-Tom' after whole root excision by means of physiological, genetic and molecular approaches. We found that a regulated basipetal auxin transport from the shoot and local auxin biosynthesis triggered by wounding are both required for the re-establishment of internal auxin gradients within the vasculature. This promotes cell proliferation at the distal cambium near the wound in well-defined positions of the basal hypocotyl and during a narrow developmental window. In addition, a pre-established pattern of differential auxin responses along the apical-basal axis of the hypocotyl and an as of yet unknown cell-autonomous inhibitory pathway contribute to the temporal and spatial patterning of the newly formed ARs on isolated hypocotyl explants. Our work provides an experimental outline for the dissection of wound-induced AR formation in tomato, a species that is suitable for molecular identification of gene regulatory networks via forward and reverse genetics approaches.


Assuntos
Ácidos Indolacéticos/metabolismo , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Solanum lycopersicum/fisiologia , Transporte Biológico , Meio Ambiente , Gravitropismo/fisiologia , Hipocótilo/fisiologia
8.
Plant Cell Environ ; 44(9): 2966-2986, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34053093

RESUMO

To determine whether root-supplied ABA alleviates saline stress, tomato (Solanum lycopersicum L. cv. Sugar Drop) was grafted onto two independent lines (NCED OE) overexpressing the SlNCED1 gene (9-cis-epoxycarotenoid dioxygenase) and wild type rootstocks. After 200 days of saline irrigation (EC = 3.5 dS m-1 ), plants with NCED OE rootstocks had 30% higher fruit yield, but decreased root biomass and lateral root development. Although NCED OE rootstocks upregulated ABA-signalling (AREB, ATHB12), ethylene-related (ACCs, ERFs), aquaporin (PIPs) and stress-related (TAS14, KIN, LEA) genes, downregulation of PYL ABA receptors and signalling components (WRKYs), ethylene synthesis (ACOs) and auxin-responsive factors occurred. Elevated SlNCED1 expression enhanced ABA levels in reproductive tissue while ABA catabolites accumulated in leaf and xylem sap suggesting homeostatic mechanisms. NCED OE also reduced xylem cytokinin transport to the shoot and stimulated foliar 2-isopentenyl adenine (iP) accumulation and phloem transport. Moreover, increased xylem GA3 levels in growing fruit trusses were associated with enhanced reproductive growth. Improved photosynthesis without changes in stomatal conductance was consistent with reduced stress sensitivity and hormone-mediated alteration of leaf growth and mesophyll structure. Combined with increases in leaf nutrients and flavonoids, systemic changes in hormone balance could explain enhanced vigour, reproductive growth and yield under saline stress.


Assuntos
Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Microscopia Eletrônica de Varredura , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/ultraestrutura , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Estresse Salino , Xilema/metabolismo
9.
J Exp Bot ; 72(7): 2450-2462, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33345278

RESUMO

In many fruit trees, heavy fruit load in one year reduces flowering in the following year, creating a biennial fluctuation in yield termed alternate bearing (AB). In subtropical trees, where flowering induction is mostly governed by the accumulation of chilling hours, fruit load is thought to generate a signal (AB signal) that blocks the perception of cold induction. Fruit removal during a heavy-fruit-load year is effective at inducing flowering only if performed one to a few months before the onset of the flowering induction period. We previously showed that following fruit removal, the content of the auxin indoleacetic acid (IAA) in citrus buds is reduced, suggesting that the hormone plays a role in the AB signal. Here, we demonstrate that fruit presence generates relatively strong polar auxin transport in citrus and olive stems. Upon fruit removal, polar auxin transport is reduced and allows auxin release from the bud. Furthermore, using immunolocalization, hormone, and gene expression analyses, we show that in citrus, IAA level in the bud and specifically in the apical meristem is reduced upon fruit removal. Overall, our data provide support for the notion that fruit presence generates an auxin signal in the bud, which may affect flowering induction.


Assuntos
Citrus , Olea , Flores , Frutas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Árvores
10.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576275

RESUMO

Plants have remarkable regenerative capacity, which allows them to survive tissue damage after exposure to biotic and abiotic stresses. Some of the key transcription factors and hormone crosstalk mechanisms involved in wound-induced organ regeneration have been extensively studied in the model plant Arabidopsis thaliana. However, little is known about the role of metabolism in wound-induced organ formation. Here, we performed detailed transcriptome analysis and used a targeted metabolomics approach to study de novo organ formation in tomato hypocotyl explants and found tissue-specific metabolic differences and divergent developmental pathways. Our results indicate that successful regeneration in the apical region of the hypocotyl depends on a specific metabolic switch involving the upregulation of photorespiratory pathway components and the differential regulation of photosynthesis-related gene expression and gluconeogenesis pathway activation. These findings provide a useful resource for further investigation of the molecular mechanisms involved in wound-induced organ formation in crop species such as tomato.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Metabolômica , Solanum lycopersicum/genética , Perfilação da Expressão Gênica , Gluconeogênese , Glicólise , Sequenciamento de Nucleotídeos em Larga Escala , Fotossíntese , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , RNA-Seq , Fatores de Transcrição/metabolismo , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA